Abstract:
A process for selectively depositing a filled underfill material onto a die surface without covering solder bumps present on the die. The process entails microjetting a polymer matrix material, a filler material, and optionally a fluxing material onto the die surface. Together, the polymer matrix and filler materials define the filled underfill material in which the filler material is dispersed to reduce the coefficient of thermal expansion of the underfill material. The resulting underfill material surrounds but does not cover the solder bumps. The die is then placed on a substrate on which a second underfill material is present, forming a composite underfill layer that completely fills the space between the die and substrate and forms a fillet on a peripheral wall of the die.
Abstract:
An electrical component having improved impact resistance and improved tolerance for thermal cycling, without sacrificing high-temperature performance, and without requiring unconventional and expensive manufacturing techniques includes an electric device mounted on a substrate circuit board, and a composite material underfilling, overmolding or encapsulating the electronic device, wherein the composite material includes a thermoset matrix phase and a discontinuous liquid crystal polymer phase dispersed throughout the thermoset matrix phase.
Abstract:
The present invention relates to rigid and clear thermosetting compositions formed from dendritic or hyperbranched polymers and cylcoaliphatic epoxy resins. The compositions may be used for coatings such as electronic device packaging, adhesives, wire coatings, and finishes.
Abstract:
An electronic module includes a substrate, at least one surface mounted integrated circuit (IC) component and an underfill material. The substrate includes a plurality of electrically conductive traces, formed on at least one surface of the substrate, and the component is electrically coupled to at least one of the conductive traces. The underfill material is positioned between the component and the substrate and provides at least one pedestal that supports the component during encapsulation. The underfill material, when cured, maintains the integrity of the electrical connections between the component and the conductive traces.
Abstract:
An electronic assembly includes a first substrate and a second substrate. The first substrate includes a first surface having a first plurality of conductive traces formed on an electrically non-conductive layer. The second substrate includes a first surface having a second plurality of conductive traces formed thereon and a second surface having a third plurality of conductive traces formed thereon. A first electronic component is electrically coupled to one or more of the plurality of conductive traces on the first surface of the second substrate. At least one of a plurality of conductive interconnects is incorporated within each solder joint that electrically couples one or more of the conductive traces formed on the second surface of the second substrate to one or more of the conductive traces formed on the first substrate.
Abstract:
Disclosed is a method for making a low CTE curable composition. In one embodiment, the method comprises mixing together (i) from 0.1 to 60.0% by weight of a nanoparticle composition and (ii) from 20.0 to 90.0% by weight of a curable binder to provide a premixture, based on the total weight of the premixture, and subjecting the premixture to high shear forces until the nanoparticle composition (i) is sufficiently dispersed in the curable binder (ii) to provide a curable composition. It has been found that the nanoparticle composition (i) must be at least one of (a) a strongly functionalized nanoparticle composition having no more than 25 mole % functionalization, (b) a weakly functionalized nanoparticle composition having from 1 to 100 mole % functionalization, (c) a nonfunctionalized nanoparticle composition, or (d) mixtures thereof.
Abstract:
An electronic package having a controlled standoff height between a surface mount electronic device and a substrate includes a plurality of polymeric standoffs adhered to at least one of the underside of the surface mount electronic device or an upper surface of the substrate. The polymeric standoffs prevent collapse of the surface mount electronic device during overmolding or encapsulation of the surface mount electronic device.
Abstract:
The thermosetable composition incorporating organo-iodine compounds that provide improved x-ray contrast are prepared by reacting an epoxy resin with crosslinking agents, wherein the crosslinking agents include compounds having iodo-phenyl functionalities, and wherein the iodine atoms include iodine-127 isotope. The resulting thermoset material includes sufficient iodine-127 isotope covalently bound to the polymer matrix to impart excellent x-ray contrast. The cured polymer materials of this invention may be utilized as underfill material for electrical components, thereby facilitating use of x-ray analysis to detect problematic voids in the underfill.
Abstract:
A process for selectively depositing a filled underfill material onto a die surface without covering solder bumps present on the die. The process entails microjetting a polymer matrix material, a filler material, and optionally a fluxing material onto the die surface. Together, the polymer matrix and filler materials define the filled underfill material in which the filler material is dispersed to reduce the coefficient of thermal expansion of the underfill material. The resulting underfill material surrounds but does not cover the solder bumps. The die is then placed on a substrate on which a second underfill material is present, forming a composite underfill layer that completely fills the space between the die and substrate and forms a fillet on a peripheral wall of the die.