Abstract:
A sample chamber array is provided. The sample chamber array may comprise at least one reservoir in fluid communication with at least one sample chamber, and a movable portion defining the sample chamber. The reservoir is fillable with a liquid biological sample. The movable portion may be movable with respect to the remainder of the sample chamber from a first position to a second position. In the first position the movable portion is concave and the sample chamber is without biological sample. In the second position the movable portion is convex and the sample chamber comprises biological sample. The movement of the movable portion to the second position causes a pressure drop to transport the biological sample into the sample chamber from the at least one reservoir. Methods for processing a biological sample and methods of making a sample chamber array are also provided.
Abstract:
A quick-release mounting mechanism for a worklight enabling the worklight to be quickly and easily mounted on and demounted from a tripod support stand and enabling an individual worklight head to be quickly and easily mounted on and demounted from a base stand or other support member such as the handle of a spring clamp or other clamp member. The mounting mechanism includes a latch member on the worklight base or on an individual worklight head that cooperates with an actuator mounted in the support stand or other support member. The latch member is received in a hole in the support and the actuator is formed to engage a catch on the latch member when the worklight or individual worklight head is in position on the support. In particular, the actuator is mounted in the support for movement between a latching position and a release position, and the latch member and actuator are formed to engage one another when the actuator is in its latching position so as to hold the worklight or individual worklight head on the support. A spring arrangement in the support urges the actuator into its latching position, and the actuator is provided with an engagement member by which a user can urge the actuator into its release position for quick release of the worklight or the head from the support.
Abstract:
A rotatable sample disk configured for samples of biological material. The sample disk may include a fill chamber for storing a first biological material, a plurality of first sample chambers positioned in the sample disk farther from the rotational axis of the sample disk than the fill chamber, a plurality of second sample chambers, and a plurality of circumferential fill channels. Each of the second sample chambers may be configured to permit fluid communication with a respective first sample chamber. The plurality of circumferential fill conduits may be configured to permit transfer of the first biological material from the fill chamber to the plurality of first sample chambers upon a first rotation of the sample disk about the rotational axis. Methods of loading a plurality of sample chambers in a sample disk are also provided.
Abstract:
A microplate having a main body portion. The main body portion having a first surface and an opposing second surface, and a groove disposed about the first surface of the main body portion. The groove separates the main body portion into an inboard section and an outboard section. A plurality of wells are formed in the inboard section of the first surface and each of the plurality of wells being sized to receive an assay therein.
Abstract:
A heated platen assembly for use in a biological testing device is disclosed having a heated platen defining a plurality of optical openings configured to permit radiation to pass through the heated platen, a light transmissive slip cover configured to cover at least one of the plurality of optical openings, and means for retaining the slip cover over the at least one of the plurality of optical openings.
Abstract:
A rotatable sample disk configured for samples of biological material. The sample disk may include a fill chamber for storing a first biological material, a plurality of first sample chambers positioned in the sample disk farther from the rotational axis of the sample disk than the fill chamber, a plurality of second sample chambers, and a plurality of circumferential fill channels. Each of the second sample chambers may be configured to permit fluid communication with a respective first sample chamber. The plurality of circumferential fill conduits may be configured to permit transfer of the first biological material from the fill chamber to the plurality of first sample chambers upon a first rotation of the sample disk about the rotational axis. Methods of loading a plurality of sample chambers in a sample disk are also provided.
Abstract:
The invention relates to an optical detection system for a thermal cycling device including at least one light source, a light detection device for detecting light received from a plurality of biological samples, and a lens having first and second surfaces formed on the lens, the second surface substantially opposed to the first surface. The first surface may be configured to collimate light and the second surface may be configured to direct light into each of the plurality of biological samples.