Abstract:
The present invention relates to methods that enable one to design temporal patterns for the optimal stimulation of a nervous system, one or more nerve cells, or nervous tissue. In one embodiment, the present invention relates to methods to design improved stimulation patterns and/or genetic algorithms for the optimal stimulation of a nervous system, one or more nerve cells, or nervous tissue. In one embodiment, the present invention utilizes a model-based design to achieve a more optimal stimulation pattern for use in connection with a nervous system, one or more nerve cells, or nervous tissue (e.g., a human nervous system). In another embodiment, the model-based design of the present invention utilizes a systematic search method to identify parameters (e.g., design variables) that minimize a cost function (e.g., optimize the fitness of a particular design). In one instance, the system and method of the present invention is demonstrated via optimal temporal patterns of electrical stimulation for a nervous system, one or more nerve cells, or nervous tissue.
Abstract:
Systems and methods for determining optimal temporal patterns of neural stimulation are disclosed. According to an aspect, a method includes selecting a temporal pattern for neural stimulation. The method also includes determining a mutation type for altering a pattern of pulses of the temporal pattern. The method also includes identifying a location within the pattern of pulses of the temporal pattern to alter based on the determined mutation type. The method further includes altering the pattern of pulses of the temporal pattern based on the identified location and mutation type for application of the altered temporal pattern to a subject.
Abstract:
Systems, methods, and devices are disclosed for optimizing patient-specific stimulation parameters for spinal cord stimulation. A patient-specific anatomical model is developed based on a pre-operative image, and a patient-specific electrical model is developed based on the anatomical model. The inputs to the electric model are chosen, and the model is used to calculate a distribution of electrical potentials within the modeled domain. Models of neural elements are stimulated with the electric potentials and used to determine which elements are directly activated by the stimulus. Information about the models inputs and which neural elements are active is applied to a cost function. Based on the value of the cost function, the inputs to the optimization process may be adjusted. Inputs to the optimization process include lead/electrode array geometry, lead configuration, lead positions, and lead signal characteristics, such as pulse width, amplitude, frequency and polarity.
Abstract:
Devices, systems and methods for increasing the efficacy and/or efficiency of deep brain stimulation (DBS) using parameters of stimulation that are custom tailored to a unique set of one or more symptoms and/or to a specific patient is shown and described herein. Also disclosed are devices, systems and methods for recording pertinent neural activity during non-regular patterns of stimulation and processing techniques for these recorded signals and stimulation parameter optimization based on these neural recordings may be used to tune computational models of the stimulation patterns to reproduce the observed neural activity.
Abstract:
Systems and methods for model-based optimization of spinal cord stimulation electrodes and devices are disclosed. According to an aspect a method includes providing a patient-specific electroanatomical model including the spine, spinal cord, and a map of target neural elements and non-target neural elements. The method also includes using model electrodes to stimulate the target neural elements. Further, the method includes determining differences in activation thresholds between the target neural elements and the non-target neural elements in a plurality of different configurations of the model electrodes. The method also includes generating an optimal spinal cord stimulation electrode configuration based on the determined differences in activation thresholds.
Abstract:
Systems and methods for stimulation of neurological tissue generate stimulation trains with temporal patterns of stimulation, in which the interval between electrical pulses (the inter-pulse intervals) changes or varies over time. Compared to conventional continuous, high rate pulse trains having regular (i.e., constant) inter-pulse intervals, the non-regular (i.e., not constant) pulse patterns or trains that embody features of the invention provide a lower average frequency.
Abstract:
Systems and methods for stimulation of neurological tissue generate stimulation trains with temporal patterns of stimulation, in which the interval between electrical pulses (the inter-pulse intervals) changes or varies over time. Compared to conventional continuous, high rate pulse trains having regular (i.e., constant) inter-pulse intervals, the non-regular (i.e., not constant) pulse patterns or trains that embody features of the invention provide a lower average frequency.
Abstract:
Systems and methods for model-based optimization of spinal cord stimulation electrodes and devices are disclosed. According to an aspect a method includes providing a patient-specific electroanatomical model including the spine, spinal cord, and a map of target neural elements and non-target neural elements. The method also includes using model electrodes to stimulate the target neural elements. Further, the method includes determining differences in activation thresholds between the target neural elements and the non-target neural elements in a plurality of different configurations of the model electrodes. The method also includes generating an optimal spinal cord stimulation electrode configuration based on the determined differences in activation thresholds.
Abstract:
Systems and methods for stimulation of neurological tissue generate stimulation trains with temporal patterns of stimulation, in which the interval between electrical pulses (the inter-pulse intervals) changes or varies over time. Compared to conventional continuous, high rate pulse trains having regular (i.e., constant) inter-pulse intervals, the non-regular (i.e., not constant) pulse patterns or trains that embody features of the invention provide a lower average frequency.
Abstract:
By targeting on selected branches or fascicles of a vagus nerve using electrode placement and/or selection, one or more target branches of the vagus nerve are substantially activated by electrical stimulation pulses delivered to a branch without substantially activating one or more non-target branches. In one embodiment, vagus nerve stimulation is delivered through an electrode placed on a thoracic vagus nerve that is separated from a recurrent laryngeal nerve, such that the vagus nerve is stimulated without causing laryngeal muscle contractions. In another embodiment, vagus nerve stimulation is delivered through a multi-contact electrode with one or more contacts selected for delivering the electrical stimulation pulses to stimulate the vagus nerve without causing laryngeal muscle contractions.