Abstract:
The disclosure relates to an organic-inorganic hybrid (OIH) polymeric composition and related methods for forming the same. The disclosure also relates to a polymeric composition as disclosed herein and related methods for forming the same. The OIH polymeric composition and the polymeric composition can be formed by UV-irradiating a corresponding composition including a Michael-addition (MA) acceptor compound, a Michael-addition (MA) donor compound, a silane compound, when present, and a photo-latent base initiator to form a corresponding base catalyst and catalyze the reactions forming the networked polymer. The OIH polymeric composition and the polymeric composition can be used as a coating on any of a variety of substrates or as an interlayer in an additive manufacturing process.
Abstract:
The disclosure relates to an organic-inorganic hybrid (OIH) polymeric composition and related methods for forming the same. The disclosure also relates to a polymeric composition as disclosed herein and related methods for forming the same. The OIH polymeric composition and the polymeric composition can be formed by UV-irradiating a corresponding composition including a Michael-addition (MA) acceptor compound, a Michael-addition (MA) donor compound, a silane compound, when present, and a photo-latent base initiator to form a corresponding base catalyst and catalyze the reactions forming the networked polymer. The OIH polymeric composition and the polymeric composition can be used as a coating on any of a variety of substrates or as an interlayer in an additive manufacturing process.
Abstract:
The disclosure relates to aqueous and non-aqueous radiation-curable nail coating compositions having a substantial amount of bio-based material in the corresponding polymeric binder. The compositions incorporate a vinyl-functionalized epoxidized bio-based unsaturated compound, which provides substantial bio-based content, vinyl functionality for curing, and soft segment functionality for ease of removal. The aqueous coating compositions generally include (a) a bio-based polymeric binder including a reaction product between a polyurethane pre-polymer and the vinyl-functionalized epoxidized bio-based unsaturated compound, (b) a photoinitiator, and (c) water. The non-aqueous coating compositions generally include (a) a bio-based polymeric binder including the vinyl-functionalized epoxidized bio-based unsaturated compound, a reactive diluent, and a vinyl functional oligomer, and (b) a photoinitiator. Related methods of forming a nail coating are also disclosed.
Abstract:
The disclosure relates to an organic-inorganic hybrid (OIH) polymeric composition and related methods for forming the same. The disclosure also relates to a polymeric composition as disclosed herein and related methods for forming the same. The OIH polymeric composition and the polymeric composition can be formed by UV-irradiating a corresponding composition including a Michael-addition (MA) acceptor compound, a Michael-addition (MA) donor compound, a silane compound, when present, and a photo-latent base initiator to form a corresponding base catalyst and catalyze the reactions forming the networked polymer. The OIH polymeric composition and the polymeric composition can be used as a coating on any of a variety of substrates or as an interlayer in an additive manufacturing process.
Abstract:
The disclosure relates to curable polyureasil compounds, methods related to curing of such compounds via hydrolysis and/or condensation to form coatings on a substrate, and coated articles formed from the curable polyureasil compounds. The polyureasil compounds are generally hydrocarbon-based, including multiple urea groups and multiple hydrolysable silyl groups per molecule. The hydrolysable silyl groups can be hydrolyzed and subsequently condensed to provide a networked polymeric structure with siloxane/urea linkages between polyureasil compound precursors to form a cured polyureasil composition useful as a coating for a substrate, in particular an anti-corrosion coating for a metallic substrate.
Abstract:
The disclosure relates to curable polyepoxysilane compounds and compositions, methods related to curing of such compounds via hydrolysis and/or condensation to form coatings on a substrate, and coated articles formed from the curable polyepoxysilane compounds. The polyepoxysilane compounds are silane-functional precursors and can be used as coatings (or pretreatments) on various substrates (e.g., metals such as aluminum) and provide a substantial improvement in corrosion resistance relative to other anti-corrosion coatings. The silane-functional precursors can be prepared by reaction of functional silanes (e.g., amino-functional silanes or other epoxide-reactive functionalized silanes) with epoxide-containing organic or hydrocarbon compounds and oligomers/polymers thereof (e.g., glycidyl-type ethers or other epoxide-/oxirane-functionalized hydrocarbon compounds), for example including hydrocarbons with one or more aromatic hydrocarbon groups (e.g., in an aromatic polyether).
Abstract:
The disclosure relates to curable polysilyl phosphate compounds and compositions as well as related methods and flame-retardant textiles incorporating the same. Curable polysilyl phosphate compounds according to the disclosure include a hydrocarbon moiety comprising at least one phosphate group and more than two hydrolysable silyl groups linked to the hydrocarbon moiety. In some embodiments, the hydrocarbon moiety is derived from spirocyclic pentaerythritol diphosphoryl chloride. The curable polysilyl phosphate compound can applied to a textile substrate and then cured to provide a flame-retardant textile with the cured polysilyl phosphate compound as a coating bonded to the textile substrate.
Abstract:
The disclosure relates to an organic-inorganic hybrid (OIH) polymeric composition and related methods for forming the same. The OIH polymeric composition is generally a networked or crosslinked polymer including an acid- or base-catalyzed reaction product between: a silane compound including at least 3 hydrolysable silyl groups, optionally, a polyisocyanate having at least two isocyanate groups, and optionally, a polyol having at least two hydroxyl groups. The OIH polymeric composition can further include a catalyst remaining after the curing of its monomer components. The OIH polymeric composition can be formed by UV-irradiating a corresponding UV-curable composition including the silane compound and a photo-latent catalyst initiator to form a corresponding catalyst and catalyze the reactions forming the networked polymer. The OIH polymeric composition can be used as a coating on any of a variety of substrates or in an additive manufacturing process.
Abstract:
The disclosure relates to aqueous and non-aqueous radiation-curable nail coating compositions having a substantial amount of bio-based material in the corresponding polymeric binder. The compositions incorporate a vinyl-functionalized epoxidized bio-based unsaturated compound, which provides substantial bio-based content, vinyl functionality for curing, and soft segment functionality for ease of removal. The aqueous coating compositions generally include (a) a bio-based polymeric binder including a reaction product between a polyurethane pre-polymer and the vinyl-functionalized epoxidized bio-based unsaturated compound, (b) a photoinitiator, and (c) water. The non-aqueous coating compositions generally include (a) a bio-based polymeric binder including the vinyl-functionalized epoxidized bio-based unsaturated compound, a reactive diluent, and a vinyl functional oligomer, and (b) a photoinitiator. Related methods of forming a nail coating are also disclosed.
Abstract:
The disclosure relates to an organic-inorganic hybrid (OIH) polymeric composition and related methods for forming the same. The disclosure also relates to a polymeric composition as disclosed herein and related methods for forming the same. The OIH polymeric composition and the polymeric composition can be formed by UV-irradiating a corresponding composition including a Michael-addition (MA) acceptor compound, a Michael-addition (MA) donor compound, a silane compound, when present, and a photo-latent base initiator to form a corresponding base catalyst and catalyze the reactions forming the networked polymer. The OIH polymeric composition and the polymeric composition can be used as a coating on any of a variety of substrates or as an interlayer in an additive manufacturing process.