Abstract:
A light-emitting element comprises: a light-emitting semiconductor stack comprising a first semiconductor layer; a second semiconductor layer on the first semiconductor layer; and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a first electrode on the first semiconductor layer; a first protection layer on the light-emitting semiconductor stack and comprising a first through hole; and a conductive contact layer on the first protection layer and electrically connected to the first electrode through the first through hole.
Abstract:
A high efficiency light-emitting diode and a method for manufacturing the same are described. The high efficiency light-emitting diode comprises: a permanent substrate; a first contact metal layer and a second contact metal layer respectively deposed on two opposite surfaces of the permanent substrate; a bonding layer deposed on the second contact metal layer; a diffusion barrier layer deposed on the bonding layer, wherein the permanent substrate, the bonding layer and the diffusion barrier layer are electrically conductive; a reflective metal layer deposed on the diffusion barrier layer; a transparent conductive oxide layer deposed on the reflective metal layer; an illuminant epitaxial structure deposed on the transparent conductive oxide layer, wherein the illuminant epitaxial structure includes a first surface and a second surface opposite to the first surface; and a second conductivity type compound electrode pad deposed on the second surface of the illuminant epitaxial structure.
Abstract:
A light-emitting device includes a growth substrate, a plurality of light-emitting diode units formed on the growth substrate and arranged in a closed loop, an electrode directly formed on the growth substrate, an electrical connection structure formed on the growth substrate and connecting the plurality of light-emitting diode units with the electrode, and a plurality of rectifying diodes connecting to respective nodes of the closed loop.
Abstract:
A light-emitting device includes a substrate with a top surface; a first light-emitting structure unit and a second light-emitting structure unit separately formed on the top surface and adjacent to each other, and wherein the first light-emitting structure unit includes a first sidewall and the second light-emitting structure unit includes a second sidewall; an isolation layer formed on the first sidewall and the second sidewall, including a first edge on the first light-emitting structure unit and wherein the first edge has an acute angle in a cross-sectional view; and an electrical connection formed on the isolation layer, the first light-emitting structure unit and the second light-emitting structure unit, and electrically connecting the first light-emitting structure unit and the second light-emitting structure unit; wherein the first sidewall and the second sidewall are inclined; and wherein the electrical connection includes a first part on the first light-emitting structure unit, and the first part does not overlap the first edge of the isolation layer.
Abstract:
A light-emitting device, includes a substrate with a top surface; a first light-emitting structure unit and a second light-emitting structure unit separately formed on the top surface and adjacent to each other, and wherein the first light-emitting structure unit includes a first sidewall and a second sidewall; a trench between the first and the second light-emitting structure units; and an electrical connection arranged on the first sidewall and the second light-emitting structure unit, and electrically connecting the first light-emitting structure unit and the second light-emitting structure unit; wherein the first sidewall connects to the top surface; wherein the first sidewall faces the second light-emitting structure units, and the second sidewall is not between the first light-emitting structure unit and the second light-emitting structure unit; and wherein the second sidewall is steeper than the first sidewall.
Abstract:
A light-emitting element comprises a substrate; a light-emitting semiconductor stack on the substrate, the light-emitting semiconductor stack comprising a first semiconductor layer, a second semiconductor layer on the first semiconductor layer, and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a first electrode on the first semiconductor layer; a reflective layer formed on the light-emitting semiconductor stack; a protection layer formed on the light-emitting semiconductor stack; and a conductive contact layer formed on the light-emitting semiconductor stack, wherein each layer above the substrate comprises a side surface inclined to a top surface of the substrate.
Abstract:
A light-emitting structure, comprising a substrate; a first unit and a second unit, separately formed on the substrate; a trench between the first unit and the second unit; and an electrical connection, electrically connecting the first unit and the second unit and comprising a bridging portion and a joining portion extending from the bridging portion, wherein the bridging portion is wider than the joining portion and the bridging portion is configured to cover the trench, and the joining portion is configured to cover first unit and the second unit.
Abstract:
A light-emitting element includes a substrate including a first side, a second side and a third side connecting the first side and the second side; a light-emitting semiconductor stack on the substrate and including a first semiconductor layer, a second semiconductor layer, and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a first electrode on the first semiconductor layer and including a contact area and a first extension area; a second electrode on the second semiconductor layer; a protection layer on the light-emitting semiconductor stack and including a first through hole exposing the first electrode and a second through hole exposing the second electrode; a first conductive part on the protection layer and electrically connected to the first electrode; and a second conductive part on the protection layer and electrically connected to the second electrode, wherein the second conductive part comprises a projected area on the light-emitting semiconductor stack, the first extension area is located outside the projected area and located between the second conductive part and the third side.
Abstract:
A light-emitting element comprises a light-emitting semiconductor stack comprising a first semiconductor layer, a second semiconductor layer on the first semiconductor layer, and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a reflective layer formed on the light-emitting semiconductor stack; a barrier layer formed on the reflective stack; a protection layer formed on the barrier layer, comprising a first through hole and a second through hole; a first height balancer filled in the first through hole and formed on the protection layer; a second height balancer filled in the second through hole and formed on the protection layer; and a conductive contact layer comprising a first conductive part formed on the first height balancer and a second conductive part formed on the second height balancer.
Abstract:
An optoelectronic semiconductor device comprises a substrate; a semiconductor system including a first conductivity layer, a second conductivity layer, and a conversion unit between the first conductivity layer and the second conductivity layer, wherein the first conductivity layer is closer to the substrate than the second conductivity layer is to the substrate, and the second conductivity layer comprises a top surface perpendicular to a thickness direction of the semiconductor system, and in a top view of the semiconductor system, an outline of the first conductivity layer surrounds an outline of the second conductivity layer; a first electrical connector on the first conductivity layer of the semiconductor system; a second electrical connector comprising a shape formed on the second conductivity layer of the semiconductor system; and a contact layer formed on the top surface of the second conductivity layer and having an outer perimeter at an inner side of the outline of the second conductivity layer in the top view of the semiconductor system, wherein the contact layer comprises a discontinuous region exposing the top surface of the second conductivity layer, the discontinuous region is formed along the shape of the second electrical connector.