Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
A method and apparatus for generating light includes a chamber having a high voltage region, a low voltage region, and a plasma generation region that defines a plasma confinement region. A magnetic core is positioned around the chamber and is configured to generate a plasma in the plasma confinement region. A switched power supply includes a DC power supply and a switched resonant charging circuit that together generate a plurality of voltage pulses at the output causing a plurality of current pulses to be applied to the power delivery section around the magnetic core so that at least one plasma loop is established around the magnetic core that confines plasma in the plasma confinement region, thereby forming a magnetically confined Z-pinch plasma. Light generated by the Z-pinch plasma propagates out of a port in the light source.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
A method and apparatus for generating light includes a chamber having a high voltage region, a low voltage region, and a plasma generation region that defines a plasma confinement region. A magnetic core is positioned around the chamber and is configured to generate a plasma in the plasma confinement region. A switched power supply includes a DC power supply and a switched resonant charging circuit that together generate a plurality of voltage pulses at the output causing a plurality of current pulses to be applied to the power delivery section around the magnetic core so that at least one plasma loop is established around the magnetic core that confines plasma in the plasma confinement region, thereby forming a magnetically confined Z-pinch plasma. Light generated by the Z-pinch plasma propagates out of a port in the light source.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
An EUV light source includes a chamber that defines a plasma confinement region. A magnetic core is positioned around the chamber and is configured to generate a plasma in the plasma generation region so that the plasma converges in the plasma confinement region. A power delivery section is positioned around the magnetic core. A power supply includes a charging circuit, a pre-ionization circuit, and a solid state switching circuit having an output coupled to the magnetic core. The power supply is configured to isolate the charging circuit from the power delivery section and to generate a pre-ionization pulse through inductive coupling that causes ionization of gas in the plasma generation region. The solid state switching circuit is configured to discharge a capacitance through inductive coupling to form a plasma in the plasma generation region.
Abstract:
A method and apparatus for generating light includes a chamber having a high voltage region, a low voltage region, and a plasma generation region that defines a plasma confinement region. A magnetic core is positioned around the chamber and is configured to generate a plasma in the plasma confinement region. A switched power supply includes a DC power supply and a switched resonant charging circuit that together generate a plurality of voltage pulses at the output causing a plurality of current pulses to be applied to the power delivery section around the magnetic core so that at least one plasma loop is established around the magnetic core that confines plasma in the plasma confinement region, thereby forming a magnetically confined Z-pinch plasma. Light generated by the Z-pinch plasma propagates out of a port in the light source.