Abstract:
An illumination device generally comprises a plurality of light-emitting diodes (LEDs); a housing for receiving the plurality of LEDs; a light-diffusing member positioned adjacent the housing for receiving light emitted from the LEDs; and a slotted and reflective circuit board for operably connecting the LEDs to a power source and/or control system. The flexible substrate can be manipulated from a first, substantially flat position to a second position by folding the substrate along upper and lower longitudinal axes defined by slots oriented longitudinally and along either side of a central longitudinal axis of the substrate, such that the substrate can be inserted into the housing in an approximate U-shape. By manipulating the substrate from the first position to the second position in this manner, light from the LEDs that is not directly emitted into the light-diffusing member is collected and reflected by the circuit board into the light-diffusing member.
Abstract:
A lighting device generally comprises a housing, including a base portion and a side wall, which defines an interior cavity with an open end; a plurality of light-emitting diodes positioned within said interior cavity, each light-emitting diode emitting a light of a first hue; a plurality of bulbs, each said bulb being associated with and fitting over a respective light-emitting diode, each said bulb converting the light of the first hue emitted from the light-emitting diode into a light of a desired hue, which is then emitted from said bulb; and a front panel positioned at the open end of the housing and receiving light from the plurality of bulbs for illuminating the front panel.
Abstract:
A circuit board for receiving and operably connecting a plurality of electrical components generally comprises: a flexible substrate of a predetermined length and having a first lateral edge and a second lateral edge; a conductive trace applied to the flexible substrate; and a plurality of integral tabs arrayed along the first lateral edge, one or more electrical components being operably connected to the conductive trace at a respective tab, and wherein each tab can be manipulated from a first position in which the tab is aligned with the remainder of the substrate to a second position in which the tab is oriented at an angle relative to the remainder of the substrate.
Abstract:
A two step process of light manipulation to obtain an even toned linear light from point sources of light. This process obtained by taking evenly space particular point sources of light (element A) delivering essentially 100% of their light into the side of an adjacent clear rod (element B). The light turns 90 degrees and travels down the clear rod (element B) in what is called a “waveguide” effect. Adjacent and parallel to A and 90 degrees turned from B is element C, a diffusing rod like member. A, B and C form a triad with A and C in separate contact with B. A and C oriented more or less 90 degrees to each other with B as the pivot point. The triad of A, B and C are contained in a channel where only C sticks out half way. Light from B illuminates C which finishes evening out the light and delivers the final bright even tone of light beyond the containing channel thru the exposed portion of element C.
Abstract:
A mechanically adjustable color conversion system for illumination devices comprised of light sources oriented linearly or in an array located under a fluorescent dyed clear or defused plastic element which has holes that carefully align with the light sources, dyed element which can be moved thru some simple mechanical fashion in such a way that there can be careful control of the light that goes directly thru the hole in one extreme or that progressively goes less thru the hole and more thru the fluorescent dyed element until all the light goes thru the dyed element at the other extreme thus allowing for the simple mechanical adjustment of the color or hue of light from the light source.