Abstract:
A universal transmit-receive (UTR) module for phased array systems comprises an antenna element shared for both transmitting and receiving; a transmit path that includes a transmit-path phase shifter, a driver, a switch-mode power amplifier (SMPA) that is configured to be driven by the driver, and a dynamic power supply (DPS) that generates and supplies a DPS voltage to the power supply port of the SMPA; and a receive path that includes a TX/RX switch that determines whether the receive path is electrically connected to or electrically isolated from the antenna element, a bandpass filter (BPF) that aligns with the intended receive frequency and serves to suppress reflected transmit signals and reverse signals, an adjustable-gain low-noise amplifier (LNA), and a receive-path phase shifter. The UTR module is specially designed for operation in phased array systems. The versatility and wideband agility of the UTR module allows a single phased array system to be designed that can be used for multiple purposes, such as, for example, both radar and communications applications.
Abstract:
A universal transmit-receive (UTR) module for phased array systems comprises an antenna element shared for both transmitting and receiving; a transmit path that includes a transmit-path phase shifter, a driver, a switch-mode power amplifier (SMPA) that is configured to be driven by the driver, and a dynamic power supply (DPS) that generates and supplies a DPS voltage to the power supply port of the SMPA; and a receive path that includes a TX/RX switch that determines whether the receive path is electrically connected to or electrically isolated from the antenna element, a bandpass filter (BPF) that aligns with the intended receive frequency and serves to suppress reflected transmit signals and reverse signals, an adjustable-gain low-noise amplifier (LNA), and a receive-path phase shifter. The UTR module is specially designed for operation in phased array systems. The versatility and wideband agility of the UTR module allows a single phased array system to be designed that can be used for multiple purposes, such as, for example, both radar and communications applications.
Abstract:
A universal transmit-receive (UTR) module for phased array systems comprises an antenna element shared for both transmitting and receiving; a transmit path that includes a transmit-path phase shifter, a driver, a switch-mode power amplifier (SMPA) that is configured to be driven by the driver, and a dynamic power supply (DPS) that generates and supplies a DPS voltage to the power supply port of the SMPA; and a receive path that includes a TX/RX switch that determines whether the receive path is electrically connected to or electrically isolated from the antenna element, a bandpass filter (BPF) that aligns with the intended receive frequency and serves to suppress reflected transmit signals and reverse signals, an adjustable-gain low-noise amplifier (LNA), and a receive-path phase shifter. The UTR module is specially designed for operation in phased array systems. The versatility and wideband agility of the UTR module allows a single phased array system to be designed that can be used for multiple purposes, such as, for example, both radar and communications applications.
Abstract:
An integrated circuit printed circuit board (IC-PCB) assembly comprises a PCB and a heatsink plate. The PCB has a first side including a first patterned conductive layer with one or more thermal pads onto which one or more heat slugs of one or more ICs mount, and a second, opposing side including a second patterned conductive layer with a heatsink plate receiving pad onto which the heatsink plate mounts. The heatsink plate has one or more posts that project from a mounting surface of the heatsink plate, and when the heatsink plate is mounted to the heatsink plate receiving pad, each post extends from the second side of the PCB, through a matching hole in the PCB, and to an associated thermal pad located on the first side of the PCB.
Abstract:
An integrated circuit/printed circuit board (IC-PCB) assembly comprises a PCB and a heatsink plate. The PCB has a first side including a first patterned conductive layer with one or more thermal pads onto which one or more heat slugs of one or more ICs mount, and a second, opposing side including a second patterned conductive layer with a heatsink plate receiving pad onto which the heatsink plate mounts. The heatsink plate has one or more posts that project from a mounting surface of the heatsink plate, and when the heatsink plate is mounted to the heatsink plate receiving pad, each post extends from the second side of the PCB, through a matching hole in the PCB, and to an associated thermal pad located on the first side of the PCB.
Abstract:
Radio frequency (RF) transmitters and methods of their operation are disclosed. An exemplary RF transmitter includes an RF power amplifier (RFPA), a dynamic power supply (DPS), and a baseband processing unit. The baseband processing unit generates an amplitude modulation (AM) signal that the DPS follows to generate a DPS voltage VDD(t). The DPS voltage VDD(t) serves as a power supply for an output stage of the RFPA. Under most operating conditions the output stage is configured to operate in a compressed mode (C-mode), but is reconfigured to operate in a product mode (or “P-mode) during times low-magnitude events in the AM signal are conveyed to the DPS and become present in the DPS voltage VDD(t) produced by the DPS. Operating the output stage in P-mode overcomes the inability of C-mode operation to reproduce low-magnitude events contained in the AM signal at the RF output of the RFPA.
Abstract:
A universal transmit-receive (UTR) module for phased array systems comprises an antenna element shared for both transmitting and receiving; a transmit path that includes a transmit-path phase shifter, a driver, a switch-mode power amplifier (SMPA) that is configured to be driven by the driver, and a dynamic power supply (DPS) that generates and supplies a DPS voltage to the power supply port of the SMPA; and a receive path that includes a TX/RX switch that determines whether the receive path is electrically connected to or electrically isolated from the antenna element, a bandpass filter (BPF) that aligns with the intended receive frequency and serves to suppress reflected transmit signals and reverse signals, an adjustable-gain low-noise amplifier (LNA), and a receive-path phase shifter. The UTR module is specially designed for operation in phased array systems. The versatility and wideband agility of the UTR module allows a single phased array system to be designed that can be used for multiple purposes, such as, for example, both radar and communications applications.
Abstract:
A universal transmit-receive (UTR) module for phased array systems comprises an antenna element shared for both transmitting and receiving; a transmit path that includes a transmit-path phase shifter, a driver, a switch-mode power amplifier (SMPA) that is configured to be driven by the driver, and a dynamic power supply (DPS) that generates and supplies a DPS voltage to the power supply port of the SMPA; and a receive path that includes a TX/RX switch that determines whether the receive path is electrically connected to or electrically isolated from the antenna element, a bandpass filter (BPF) that aligns with the intended receive frequency and serves to suppress reflected transmit signals and reverse signals, an adjustable-gain low-noise amplifier (LNA), and a receive-path phase shifter. The UTR module is specially designed for operation in phased array systems. The versatility and wideband agility of the UTR module allows a single phased array system to be designed that can be used for multiple purposes, such as, for example, both radar and communications applications.
Abstract:
A universal transmit-receive (UTR) module for phased array systems comprises an antenna element shared for both transmitting and receiving; a transmit path that includes a transmit-path phase shifter, a driver, a switch-mode power amplifier (SMPA) that is configured to be driven by the driver, and a dynamic power supply (DPS) that generates and supplies a DPS voltage to the power supply port of the SMPA; and a receive path that includes a TX/RX switch that determines whether the receive path is electrically connected to or electrically isolated from the antenna element, a bandpass filter (BPF) that aligns with the intended receive frequency and serves to suppress reflected transmit signals and reverse signals, an adjustable-gain low-noise amplifier (LNA), and a receive-path phase shifter. The UTR module is specially designed for operation in phased array systems. The versatility and wideband agility of the UTR module allows a single phased array system to be designed that can be used for multiple purposes, such as, for example, both radar and communications applications.
Abstract:
Radio frequency (RF) transmitters and methods of their operation are disclosed. An exemplary RF transmitter includes an RF power amplifier (RFPA), a dynamic power supply (DPS), and a baseband processing unit. The baseband processing unit generates an amplitude modulation (AM) signal that the DPS follows to generate a DPS voltage VDD(t). The DPS voltage VDD(t) serves as a power supply for an output stage of the RFPA. Under most operating conditions the output stage is configured to operate in a compressed mode (C-mode), but is reconfigured to operate in a product mode (or “P-mode) during times low-magnitude events in the AM signal are conveyed to the DPS and become present in the DPS voltage VDD(t) produced by the DPS. Operating the output stage in P-mode overcomes the inability of C-mode operation to reproduce low-magnitude events contained in the AM signal at the RF output of the RFPA.