Abstract:
For example, of a first intensity distribution waveform WF1 indicated by a distance distribution of an intensity of light which returns to one end of a core of a multicore fiber, and a second intensity distribution waveform WF2 indicated by a distance distribution of an intensity of light which returns to the other end of the core, the second intensity distribution waveform WF2 is inverted. Further, for example, an inverted intensity distribution waveform WF3 which is inverted and the first intensity distribution waveform WF1 which is not inverted are added.
Abstract:
An optical fiber alignment device includes an image-capturing device capturing images of end surfaces of two optical fibers; an image-analyzing device obtaining position coordinates of two or more cores in the end surfaces from the image captured by the image-capturing device for each of the two optical fibers; a calculation device substituting the position coordinates of the cores obtained for each of the optical fibers in a theoretical equation that represents a total sum of axial deviation losses at the time of splicing the cores to each other, the calculation device obtaining a positional relationship between the end surfaces of the optical fibers from the theoretical equation such that the total sum of the axial deviation losses becomes a minimum; and a driving device arranging the optical fibers such that the end surfaces of the optical fibers satisfy the positional relationship obtained by the calculation device.
Abstract:
A method of processing an optical fiber of the invention includes: a determination step of determining at least an ambient temperature of conditions of a diffusion treatment that causing an optical fiber to be subjected to an non-oxygen bridging atmosphere; an exposure step of exposing the optical fiber to a gas including an oxygen bridging element that is capable of processing the Non-Bridging Oxygen Hole Centers by being bonded to a non-bridging oxygen in the optical fiber, and causing the oxygen bridging element to infiltrate into the optical fiber; and a diffusion step of subsequently causing the optical fiber to be subjected to the non-oxygen bridging atmosphere in the exposure ambient temperature which is determined by the determination step and at which the optical fiber is subjected to the non-oxygen bridging atmosphere, and thereby diffusing the oxygen bridging element into the optical fiber.
Abstract:
Provided is a process for producing an optical fiber including a processing process where an optical fiber work made of a glass is held by a processing apparatus for an optical fiber work to be heated and processed, wherein in the processing process, vibration caused by an abnormality of the optical fiber work in the heated state or vibration caused by an abnormality of a glass body which is a portion of the processing apparatus for an optical fiber work and is in the state where the glass body portion is heated due to the heating of the optical fiber work is detected by using an acoustic emission sensor.
Abstract:
An optical fiber winding reel of the invention includes: a cylindrical main winding body; main flanges provided at both respective ends of the main winding body in an axis direction thereof; and an auxiliary winding body provided outside at least one of the main flanges, wherein a slit that extends toward a central axis line of a reel is formed at part in a circumferential direction of the main flange at which the auxiliary winding body is provided, and both side portions of a position of the main flange at which the slit is formed are a low rigidity region, the low rigidity region has a rigidity locally lower than that of the other portions in a direction orthogonal to a plate surface of the main flange.
Abstract:
For example, of a first intensity distribution waveform WF1 indicated by a distance distribution of an intensity of light which returns to one end of a core of a multicore fiber, and a second intensity distribution waveform WF2 indicated by a distance distribution of an intensity of light which returns to the other end of the core, the second intensity distribution waveform WF2 is inverted. Further, for example, an inverted intensity distribution waveform WF3 which is inverted and the first intensity distribution waveform WF1 which is not inverted are added.
Abstract:
Provided is a process for producing an optical fiber including a processing process where an optical fiber work made of a glass is held by a processing apparatus for an optical fiber work to be heated and processed, wherein in the processing process, vibration caused by an abnormality of the optical fiber work in the heated state or vibration caused by an abnormality of a glass body which is a portion of the processing apparatus for an optical fiber work and is in the state where the glass body portion is heated due to the heating of the optical fiber work is detected by using an acoustic emission sensor.