Abstract:
An optical fiber sensor includes: a central core disposed at a center of an optical fiber; and an outer peripheral core that spirally surrounds the central core. The effective refractive index ne2 of the outer peripheral core is lower than the effective refractive index ne1 of the central core. A ratio between the effective refractive index ne2 and the effective refractive index ne1 matches a ratio between an optical path length of the central core and an optical path length of the outer peripheral core.
Abstract:
An optical fiber sensor includes: a central core disposed at a center of an optical fiber; and an outer peripheral core that spirally surrounds the central core. The effective refractive index ne2 of the outer peripheral core is lower than the effective refractive index ne1 of the central core. A ratio between the effective refractive index ne2 and the effective refractive index ne1 matches a ratio between an optical path length of the central core and an optical path length of the outer peripheral core.
Abstract:
A method for manufacturing an optical fiber grating that includes first and second gratings that configure an optical resonator, the method including: forming the first grating by radiating ultraviolet light to an optical fiber so that a irradiation intensity Z satisfies the following Equation 1: Z≦(ΔλS/x+0.04556Y2+1.2225Y)/(0.05625Y2+1.6125Y) . . . Equation 1, where, Z represents an irradiation intensity (mJ/mm2) of the ultraviolet light, ΔλS represents the maximum shift amount of a reflection center wavelength of the first grating that is allowed as long as reflection wavelengths of the first grating and second grating overlap each other, x represents a shift amount of the reflection center wavelength per temperature change of 1° C. (nm/° C.) in the first grating, and Y represents an intensity (W) of the wave-guided light.
Abstract:
A method for detecting a non-superconducting transition of a superconducting wire including a substrate, a superconducting layer having a critical temperature of 77 K or more, and a metal stabilization layer includes, adhesively attaching an optical fiber where a plurality of fiber Bragg gratings are formed in a core along a longitudinal direction thereof to the superconducting wire; measuring in advance a Bragg wavelength shift of the fiber Bragg gratings for a temperature variation of the superconducting wire, and determining a relational expression based on the shift for a temperature calculation of the superconducting wire; determining temperature variations of the fiber Bragg gratings before and after the non-superconducting transition of the superconducting wire using the relational expression; and calculating a propagation rate of the non-superconducting transition based on both a time difference of temperature increases of the fiber Bragg gratings, and an interval between each of the fiber Bragg gratings.
Abstract:
Optical pulses are output from a light source to an optical fiber at one selected emission wavelength, a reflection light reflected at a fiber Bragg grating at the optical fiber is received at an optical receiver and is converted to a reflection signal by an optical to electrical conversion, a fiber Bragg grating which reflects the reflection light is identified by the signal processing unit when an intensity of the reflection signal obtained by the optical receiver is over a predetermined threshold value, and a measurement step that calculates acoustic frequencies at the fiber Bragg grating based on a temporal change of the intensity of the reflection signal at the fiber Bragg grating is repeated more than two times while changing an emission wavelength of the light source. The acoustic frequency at each fiber Bragg grating is calculated to determine an acoustic distribution along a longitudinal direction of the fiber.
Abstract:
A fan-in/fan-out device includes a plurality of single-core fibers which are connected to a plurality of first cores of a multicore fiber and which include an elongated portion extending in a longitudinal direction so as to reduce a diameter and being connected to a first end portion of the multicore fiber at a second end portion in an extending direction of the elongated portion, where a refractive index distribution of each of the single-core fibers has a single peak, a relative refractive index difference of a second core with respect to a second cladding in each of the single-core fibers is 0.8% or more; and a second mode field diameter of the second end portion of the elongated portion is greater than a first mode field diameter of the first end portion of the multicore fiber.