Abstract:
An optical fiber sensor includes: a central core disposed at a center of an optical fiber; and an outer peripheral core that spirally surrounds the central core. The effective refractive index ne2 of the outer peripheral core is lower than the effective refractive index ne1 of the central core. A ratio between the effective refractive index ne2 and the effective refractive index ne1 matches a ratio between an optical path length of the central core and an optical path length of the outer peripheral core.
Abstract:
An optical fiber includes: a core that includes quartz glass doped with a core updopant; an inner cladding that includes quartz glass doped with a cladding updopant and a downdopant and that covers a circumferential surface of the core; and an outer cladding that includes quartz glass and that covers an outer circumferential surface of the inner cladding. A refractive index of the inner cladding is substantially equal to a refractive index of the outer cladding. The inner cladding contains the cladding updopant at a concentration such that a refractive index increase rate ascribed to the cladding updopant falls within a range of 0.25% to 0.5%.
Abstract:
A plurality of cores 51 is disposed around the center axis of a first cladding 52 in a state in which an inter-core distance Λ of cores adjacent to each other is equal, a refractive index n1 of the core 51 is provided higher than a refractive index n2 of the first cladding 52, and the refractive index n2 of the first cladding 52 is provided higher than a refractive index n3 of a second cladding 53. Moreover, 5.8≦Λ/MFD(2λc/(λc+λop))≦8 is satisfied, where the inter-core distance is defined as Λ, a mode field diameter of the core is defined as MFD, a cutoff wavelength is defined as λc, and a wavelength of communication light incident on the core 51 is defined as λop.
Abstract:
Provided is a method of manufacturing an optical fiber base material by an inside mounting method, including: a step of rotating and heating a glass tube fixed at two positions and supplying a gas into a through-hole of the glass tube, wherein in the step, the glass tube is warped so that an axis between respective fixed portions of the glass tube has a shape in which a catenary curve is reversed in the vertical direction.
Abstract:
A plurality of cores 51 is disposed around the center axis of a first cladding 52 in a state in which an inter-core distance Λ of cores adjacent to each other is equal, a refractive index n1 of the core 51 is provided higher than a refractive index n2 of the first cladding 52, and the refractive index n2 of the first cladding 52 is provided higher than a refractive index n3 of a second cladding 53. Moreover, 5.8≦Λ/MFD(2λc/(λc+λop))≦8 is satisfied, where the inter-core distance is defined as Λ, a mode field diameter of the core is defined as MFD, a cutoff wavelength is defined as λc, and a wavelength of communication light incident on the core 51 is defined as λop.
Abstract:
The first cladding 52 has a two-layer structure formed of a solid inner layer 62A passed through the center axis of the first cladding 52 and an outer layer 62B enclosing the inner layer 62A and the plurality of cores 51 with no gap. A refractive index n1 of the core 51 is provided higher than refractive indexes n2A and n2B of the inner layer 62A and the outer layer 62B, the refractive indexes n2A and n2B of the inner layer 62A and the outer layer 62B are provided higher than a refractive index n3 of the second cladding 53, and the refractive index n2A of the inner layer 62A is provided lower than the refractive index n2B of the outer layer 62B.
Abstract:
A fiber laser includes: a gain fiber having a core doped with Yb; and a forward pumping light source group that generates forward pumping light that is inputted into the gain fiber and belongs to a 976-nm band. An absorption amount of the forward pumping light in a section of the gain fiber, calculated according to ∫P(λ)A(λ)dλ, is greater than or equal to 253 W and less than or equal to 1100 W where P(λ) [W] is a power spectrum of the forward pumping light, and A(λ) [%/m] is an absorption rate spectrum of the doped Yb. A length of the section is 1 m and includes an end face of the gain fiber on which the forward pumping light is incident.
Abstract:
The first cladding 52 has a two-layer structure formed of a solid inner layer 62A passed through the center axis of the first cladding 52 and an outer layer 62B enclosing the inner layer 62A and the plurality of cores 51 with no gap. A refractive index n1 of the core 51 is provided higher than refractive indexes n2A and n2B of the inner layer 62A and the outer layer 62B, the refractive indexes n2A and n2B of the inner layer 62A and the outer layer 62B are provided higher than a refractive index n3 of the second cladding 53, and the refractive index n2A of the inner layer 62A is provided lower than the refractive index n2B of the outer layer 62B.
Abstract:
Provided is a method of manufacturing an optical fiber base material by an inside mounting method, including: a step of rotating and heating a glass tube fixed at two positions and supplying a gas into a through-hole of the glass tube, wherein in the step, the glass tube is warped so that an axis between respective fixed portions of the glass tube has a shape in which a catenary curve is reversed in the vertical direction.
Abstract:
An optical fiber includes: a core that includes quartz glass doped with a core updopant; an inner cladding that includes quartz glass doped with a cladding updopant and a downdopant and that covers a circumferential surface of the core; and an outer cladding that includes quartz glass and that covers an outer circumferential surface of the inner cladding. A refractive index of the inner cladding is substantially equal to a refractive index of the outer cladding. The inner cladding contains the cladding updopant at a concentration such that a refractive index increase rate ascribed to the cladding updopant falls within a range of 0.25% to 0.5%.