Abstract:
The method and system ventilates a patient's airway during the inspiratory phase and expiratory phase from a source of pressurized gas, typically from a compressor. The system and method supplies, to the patient airway during the inspiratory phase, a plurality of pulses of small volumes of gas from the gas source, and adds, in succession, pulses of small volumes of gas to provide successively greater volumes of gas successively increasing in pulsatile form the pressure of the gas in the patient's airway. This addition of successively greater volumes of gas serves to provide diffusive ventilation to the patient during the inspiratory phase, and, permits the patient to exhale during the expiratory phase.
Abstract:
Mobile self-contained ventilator having a framework and a compressor carried by said framework. The compressor has a motor and at least one fan driven by the motor which causes air to pass over the motor for cooling the motor and for picking up heat from the motor. The compressor also has an output through which compressed air is supplied. A respirator is carried by the framework and includes at least one oscillator cartridge having an inlet connected to the outlet for receiving compressed air from the outlet. The oscillator cartridge is disposed so that air, after it has passed over the motor, passes over the cartridge to heat the cartridge to inhibit moisture condensation within the cartridge.
Abstract:
Ventilator having an inhalation phase and an exhalation phase in its operative cycle for use with a source of gas under pressure. A master sequencing cartridge having an inlet adapted to be connected to a source of gas under pressure and an outlet is provided. The cartridge has a valve member movable between open and closed positions to control the flow of gas from the inlet to the outlet. The cartridge is provided with a diaphragm capable of operating under differentials in pressure for causing movement of said valve member. A breathing circuit outlet is provided and is coupled to the outlet of the master sequencing cartridge. A pneumatic control circuit is provided for controlling the movement of the valve member of the master sequencing cartridge between open and closed positions and includes a volume/rate control valve assembly having an inlet and an outlet. The inlet of the control valve assembly is coupled to the outlet of the master sequencing cartridge and the inlet is coupled to the diaphragm means of the cartridge whereby the timing for moving the valve member between open and closed positions is determined by the rate of flow of gases through the volume/rate control valve assembly. A demand base line compensator is coupled to the breathing circuit outlet and provides demand constant positive airway pressure.
Abstract:
Ventilator having an inhalation phase and an exhalation phase in its operative cycle for use with a source of gas under pressure. A demand flow accelerator is responsive to the pressure of the gases in a breathing head assembly and provides additional gases to the breathing head assembly when the pressure of the gases in the breathing head assembly falls below a predetermined pressure. A sensor is also provided responsive to the pressure of the gases in the breathing head assembly for supplying gases to the breathing head assembly when the pressure of the gases in the breathing head assembly falls below a predetermined value to cause the patient to exhale against a substantially constant positive airway pressure. An additional sensor is also provided which is sensitive to the airway pressure being sensed for bleeding gases from the breathing circuit when pressure greater than a predetermined pressure are reached. Lock-out means is provided for locking out an inspiratory phase which exceeds a predetermined time. Starting means is provided for ensuring that the ventilator will be switched to an expiratory phase before an inspiratory phase is initiated.
Abstract:
Interface apparatus for use by a patient having a patient airway and for use with a mechanical ventilator having inspiratory and expiratory tubing. An intrapulmonary percussive ventilator having an output and an injection device coupled to the output of the intrapulmonary percussive ventilator and having an output. The interface apparatus comprises a mixing device having a mixing chamber therein and having an outlet adapted to be connected to the patient airway. The body has fittings in communication with the mixing chamber adapted to be connected to the inspiratory tubing and to the expiratory tubing of the mechanical ventilator. The body also has an injection port in communication with the mixing chamber adapted to be connected to the output of the injection device.
Abstract:
Ventilator for use with a source of gas under pressure for supplying such gas to the airway of a patient having an inlet adapted to be connected to the source of gas, and an outlet adapted to be connected to the airway of the patient. A pneumatic oscillator is connected to the inlet for supplying pulsatile gas in the form of successive small volumes of gas to the airway of the patient during a breath of the patient to cause diffusive ventilation of the airway to the patient. An exhalation valve assembly is connected to the patient airway for permitting the patient to exhale gases introduced into the patient airway.
Abstract:
Ventilator adapted to be connected to a source of gas under pressure comprising a case and an inlet adapted to be connected to the source of gas. It also is comprised of an oscillator cartridge carried by the case and having a body with an inlet and an outlet and a flow passage interconnecting the inlet and the outlet. A valve member is carried by the body and is movable between open and closed positions with respect to the outlet. A diaphragm is carried by the body and is connected to the valve member for moving the valve member between and open and closed positions to interrupt the flow of gas in the flow passage between the inlet and the outlet. A servo port is carried by the body for supplying gas to the diaphragm for causing movement of the diaphragm to thereby cause movement of the valve member to the closed position to interrupt the flow of gas in the flow passage between the inlet and the outlet. An adjustable metering valve meters the flow of gas from the outlet to the servo port to provide for cyclic operation of the oscillation cartridge between inspiratory and expiratory phases. A patient adapter having an inlet and an outlet and a pneumatic clutching device having an inlet and an outlet is coupled to the inlet of the patient adapter. The outlet of the oscillator cartridge is coupled to the inlet of the pneumatic clutching device. The adjustable metering valve has a single control knob which changes the frequency of cyclic operation and the ratio between the inspiratory phase and the expiratory phase.
Abstract:
A valve device is disclosed for unloading pressure from a compressor of the type utilized in a medical respirator. The device is formed with a cylindrical chamber containing a compressible elastomeric member. Inlet and relief ports of the valve open into the chamber, and the inlet port is connected with the outlet of the gas compressor. Bistable actuator means is provided for moving a plunger within the chamber which in turn causes the cylindrical member to assume either a compressed or uncompressed state. In its uncompressed state a radial clearance between the outer wall of the elastomeric member and the chamber provides a flow path between the inlet and relief ports to bleed pressure from the compressor. In its compressed state the elastomeric member expands to occlude the flowpath and prevent pressure bleed-off from the compressor. A switch is provided to open and close a circuit between the compressor and a source of electrical power responsive respectively to the uncompressed and compressed states of the elastomeric member.
Abstract:
A connector assembly is disclosed for rapidly forming a secure fluid-tight connection in a fluid circuit. The proximal ends of the fittings are adapted for connection with tubing, hose or other fittings of the circuit. An annular connector cap is formed at its opposite ends with inwardly projecting detent shoulders. One detent shoulder is sized for engagement in an annular locking groove formed about the outer surface of the female fitting while the other detent shoulder is sized for locking engagement with one of a series of annular locking barbs formed about the male fitting. Inclined camming surfaces are associated with the barbs for camming the corresponding detent shoulder radially outwardly and thereby facilitate locking of the detent with a selected barb which securely holds the fittings together in fluid-tight relationship. The cap is formed of a resilient material while at the same time circumferentially spaced slots are provided about the ends of the cap to permit flexing of the detent shoulders upon engagement with the respective locking groove and barbs.
Abstract:
Quick disconnect assembly comprising a female fitting having a socket formed therein and a male fitting having a bayonet adapted to fit in said socket. Seals are carried by the female and male fittings for forming an airtight seal between the bayonet and the socket. A retainer is provided for retaining said fittings in engagement with each other.