Abstract:
An optical communication device has a Mach-Zehnder optical modulator; a monitor configured to monitor a modulated light output from the optical modulator; a first controller configured to set a substrate bias voltage or an amplitude of a drive signal applied to the first waveguide of a waveguide pair of the optical modulator to a desired level that provides a first modulation index; and a second controller configured to control a substrate bias voltage or an amplitude of the drive signal applied to the second waveguide of the waveguide pair based upon an output signal from the monitor such that a second modulation index for the second waveguide becomes the same or closer to the first modulation index set for the first waveguide.
Abstract:
An optical communication apparatus includes an optical modulator having a Mach-Zehnder interferometer with a pair of waveguides and configured to modulate a phase of light emitted from a light source, a first controller configured to control a first substrate bias voltage or an amplitude of a first drive signal applied to a first waveguide of the waveguide pair of the optical modulator based upon an output of the optical modulator or a wavelength of the light source; and a second controller configured to control a second substrate bias voltage or an amplitude of a second drive signal applied to a second waveguide of the waveguide pair of the optical modulator independently from the first controller, based upon the output of the optical modulator or the wavelength of the light source.
Abstract:
An optical communication device includes an optical modulator of a Mach-Zehnder type, a low frequency superimposing circuit configured to superimpose a low frequency signal on a substrate bias voltage applied to the optical modulator, a monitor configured to monitor a modulated light output from the optical modulator, and a substrate bias controller configured to control the substrate bias voltage based upon a low frequency component contained in a monitor signal output from the monitor.
Abstract:
An optical communication device has a pair of Mach-Zehnder optical modulators; a voltage monitor configured to monitor a voltage component acquired by optical-to-electric conversion of combined light output from the Mach-Zehnder optical modulators; a power monitor configured to monitor a power component acquired by square law detection of the optical-to-electric converted combined light from the Mach-Zehnder optical modulators; a first controller configured to control a substrate bias voltage or a driving amplitude applied to one of two waveguides of each of the Mach-Zehnder optical modulators based upon an output of the power monitor, and a second controller configured to control the substrate bias voltage or the driving amplitude applied to the other of the two waveguides of each of the Mach-Zehnder optical modulator based upon an output of the voltage monitor.
Abstract:
In an optical modulation device, a first drive signal and a first bias signal are applied to a phase modulation unit, a second drive signal and a second bias signal are applied to a phase modulation unit, and a third bias signal is applied to a π/2 phase shift unit. A control unit adjusts the third bias signal in a first adjustment period, adjusts the first drive signal and the first bias signal in a second adjustment period next to the first adjustment period, and adjusts the second drive signal and the second bias signal in a third adjustment period next to the second adjustment period. The control unit starts the second adjustment period before a gap between the current value of an adjustment reference signal and a target value is filled, and starts the third adjustment period before a gap in the second adjustment period is filled.