Abstract:
An optical transmitter that transmits an optical signal includes a dither superimposing circuit configured to generate a dither signal, the dither signal being used to control an operation of the optical transmitter to output the optical signal, and a control circuit configured to control intermittent superimposition of the dither signal onto a target to be controlled.
Abstract:
An optical transmitter has an optical modulator with a Mach-Zehnder interferometer, a pilot signal generator configured to generate a pilot signal to be superimposed on a drive signal for driving the optical modulator or on a substrate bias voltage applied to the optical modulator, and a controller configured to detect a ratio between a pilot component and a direct current component contained in a light output from the optical modulator and control at least one of an amplitude of the drive signal and a level of the substrate bias voltage such that the ratio becomes a constant value.
Abstract:
An optical modulator includes: a modulator including an optical waveguide provided in a semiconductor substrate having an electro-optical effect and an electrode to apply an electric field depending on a bias voltage and a modulation signal to the optical waveguide; a driver circuit to generate a modulation signal in accordance with an input signal; a superimposer to superimpose a reference signal on the bias voltage, the reference signal having lower frequency than the modulation signal; and a controller to control a bias voltage in a direction orthogonal to a modulation direction of the modulator based on the frequency component of the reference signal extracted from a modulated optical signal generated by the modulator.
Abstract:
An optical communication device has a pair of Mach-Zehnder optical modulators; a voltage monitor configured to monitor a voltage component acquired by optical-to-electric conversion of combined light output from the Mach-Zehnder optical modulators; a power monitor configured to monitor a power component acquired by square law detection of the optical-to-electric converted combined light from the Mach-Zehnder optical modulators; a first controller configured to control a substrate bias voltage or a driving amplitude applied to one of two waveguides of each of the Mach-Zehnder optical modulators based upon an output of the power monitor, and a second controller configured to control the substrate bias voltage or the driving amplitude applied to the other of the two waveguides of each of the Mach-Zehnder optical modulator based upon an output of the voltage monitor.
Abstract:
An optical receiver includes: an optical receiving device configured to generate an analog received signal that represents a received modulated optical signal; an A/D converter configured to generate a digital received signal from the analog received signal; an E/O circuit configured to generate an optical digital signal from the digital received signal; an O/E circuit configured to generate an electric digital signal from the optical digital signal; and a digital signal processor configured to recover a data signal from the electric digital signal.
Abstract translation:光接收器包括:光接收装置,被配置为产生表示接收到的调制光信号的模拟接收信号; A / D转换器,被配置为从模拟接收信号产生数字接收信号; 被配置为从数字接收信号产生光学数字信号的E / O电路; O / E电路,被配置为从光学数字信号产生电数字信号; 以及配置成从电数字信号中恢复数据信号的数字信号处理器。
Abstract:
An optical communication device has a pair of Mach-Zehnder optical modulators; a voltage monitor configured to monitor a voltage component acquired by optical-to-electric conversion of combined light output from the Mach-Zehnder optical modulators; a power monitor configured to monitor a power component acquired by square law detection of the optical-to-electric converted combined light from the Mach-Zehnder optical modulators; a first controller configured to control a substrate bias voltage or a driving amplitude applied to one of two waveguides of each of the Mach-Zehnder optical modulators based upon an output of the power monitor, and a second controller configured to control the substrate bias voltage or the driving amplitude applied to the other of the two waveguides of each of the Mach-Zehnder optical modulator based upon an output of the voltage monitor.
Abstract:
An optical modulator includes: a modulator including an optical waveguide provided in a semiconductor substrate having an electro-optical effect and an electrode to apply an electric field depending on a bias voltage and a modulation signal to the optical waveguide; a driver circuit to generate a modulation signal in accordance with an input signal; a superimposer to superimpose a reference signal on the bias voltage, the reference signal having lower frequency than the modulation signal; and a controller to control a bias voltage in a direction orthogonal to a modulation direction of the modulator based on the frequency component of the reference signal extracted from a modulated optical signal generated by the modulator.