Abstract:
A method implemented by a middlebox comprising registering a customer premises equipment (CPE) in the middlebox, wherein the CPE is coupled to the middlebox via an electrical line, and facilitating registration of the CPE in a central office (CO) equipment coupled to the middlebox.
Abstract:
Disclosed herein is a multi-stage echo cancelation scheme. The disclosed embodiments include an apparatus and method for monitoring and canceling echoes greater than 25 dB in a coaxial cable plant. The method includes obtaining echo channel estimate coefficients from a cable node. The method determines a location and strength of each partial echo in an impulse response using the echo channel estimate coefficients. Optionally, the method determines a frequency response of each partial echo in the impulse response.
Abstract:
A method comprising generating an updated security key upon expiration of a key exchange timer, transferring the updated security key to a Coaxial Network Unit (CNU), retaining an original key, wherein the updated security key comprises a different key identification number than the original key, accepting and decrypting upstream traffic that employs either the original key or the updated key, after transferring the updated security key to the CNU, creating a key switchover timer, before the key switchover timer expires, verify that upstream traffic transferred from the CNU on a logical link uses the updated security key, and when upstream traffic is encrypted using the updated security key, begin using the updated security key to encrypt downstream traffic and clear the key switchover timer.
Abstract:
A system and method of responding to a database query. A query is received for MPP database data stored on a plurality of processing systems. A total splits number of the database data, each split containing at least a portion of the database, is determined. If the total splits number splits is greater than a splits threshold number, partial task maps are created and streamed to the processing systems after compiling the query. If the total splits number is less than the splits threshold number, a complete task map for all splits is created and output to the plurality of processing systems.
Abstract:
A Cable Modem Termination System (CMTS) comprising a receiver configured to receive a plurality of upstream transmission request messages from a plurality of coaxial units via an electro-optical network, wherein the upstream transmission request messages each request permission to transmit a specified amount of data, a processor coupled to the receiver and configured to allocate Orthogonal Frequency-Division Multiplexing (OFDM) minislots to each coaxial unit based on the amount of data requested in the associated upstream transmission request message, and a transmitter coupled to the processor and configured to transmit at least one Uplink Allocation Map (UL-MAP) message to indicate minislot allocations to the coaxial units.
Abstract:
A method comprising generating an updated security key upon expiration of a key exchange timer, transferring the updated security key to a Coaxial Network Unit (CNU), retaining an original key, wherein the updated security key comprises a different key identification number than the original key, accepting and decrypting upstream traffic that employs either the original key or the updated key, after transferring the updated security key to the CNU, creating a key switchover timer, before the key switchover timer expires, verify that upstream traffic transferred from the CNU on a logical link uses the updated security key, and when upstream traffic is encrypted using the updated security key, begin using the updated security key to encrypt downstream traffic and clear the key switchover timer.
Abstract:
A method comprising receiving a coaxial network unit (CNU) registration request from a CNU via a coaxial portion of a network, wherein the registration request is addressed to an optical line terminal (OLT), and forwarding the CNU registration request to the OLT via an optical portion of the network. Included is an OLT comprising a processor configured to receive a registration request including a logical node identifier (LNID) assigned to a coaxial line terminal (CLT) in a payload of the registration request, wherein the CLT intermediates between the OLT via an optical portion of a unified optical-coaxial network and a CNU via an electrical network portion of the unified optical-coaxial network, assign a logical link identifier (LLID) to the CNU, and send the LLID to the CNU via the CLT.
Abstract:
A method comprising generating an updated security key upon expiration of a key exchange timer, transferring the updated security key to a Coaxial Network Unit (CNU), retaining an original key, wherein the updated security key comprises a different key identification number than the original key, accepting and decrypting upstream traffic that employs either the original key or the updated key, after transferring the updated security key to the CNU, creating a key switchover timer, before the key switchover timer expires, verify that upstream traffic transferred from the CNU on a logical link uses the updated security key, and when upstream traffic is encrypted using the updated security key, begin using the updated security key to encrypt downstream traffic and clear the key switchover timer.
Abstract:
A method of determining a round trip delay time in a network comprising receiving a gate message allocating a transmission time window; retrieving a first timestamp from the gate message; setting a first clock to the time corresponding to the first timestamp, and wherein the first clock runs synchronously with a second clock recovered from a received data stream; sending upstream, after a time interval comprising a grant start time included in the transmission time window offset by a random delay time, a registration request message, wherein the registration request message includes a second timestamp obtained from the first clock; and determining a round trip delay (RTT) from a time the registration request message is received and the second timestamp.
Abstract:
A method of allocating upstream bandwidth on a network comprising mapping an integer portion of a value obtained from a grant start time into a symbol number of a data frame on a coaxial segment of the network, wherein the value comprises the grant start time in units of a length of a data frame in the coaxial segment of a network, and wherein the length of the data frame comprises a preselected number of units of time defined in an optical segment of a network; mapping a fractional portion of the value obtained from the grant start time into a subcarrier number of the data frame; and mapping a grant length into a number subcarriers of the data frame.