Abstract:
A methodology for inline characterization and temperature profiling that enables parallel measurement of device characteristics at multiple temperatures and the resulting device are disclosed. Embodiments may include calibrating a first device under test (DUT) with respect to at least one heating structure in a metal layer of an integrated circuit (IC), applying a heater voltage to the at least one heating structure, and measuring at least one characteristic of the first DUT at a first temperature corresponding to the heater voltage.
Abstract:
Wafer test structures and methods of providing wafer test structures are described. The methods include: fabricating multiple test devices and multiple fuse devices on the wafer, each test device having a respective fuse device associated therewith, which open circuits upon failure of the test device; and fabricating a selection circuit operative to selectively connect one test device to a sense contact pad, and the other test devices to a stress contact pad. The selection circuit facilitates sensing one or more electrical signals of the one test device by electrical contact with the sense contact pad, while stress testing the other test devices by electrical contact with the stress contact pad. In one embodiment, each test device has respective first and second switch devices, operative to selectively electrically connect the test device to the sense or stress contact pads. In another embodiment, the method includes wafer testing using the test structure.
Abstract:
A method of forming an OTPROM capable of storing twice the number of bits as a conventional OTPROM without increasing the overall size of the device is provided. Embodiments include forming a OTPROM, the OTPROM array having a plurality of formed devices; receiving a binary code to program the OTPROM array; separating the binary code into a first part and a second part; programming each device with one of four data storage states by: forming a gate oxide layer of each device to a thickness corresponding to the first part of the binary code, and selectively applying a TDDB stress to the gate oxide layer corresponding to the second part of the binary code; detecting a Idsat level discharged by each device with a multi-bit sense amplifier; and reading the state of each device based on the detected Idsat level.
Abstract:
There is set forth herein a semiconductor structure including a plurality of test devices, the plurality of test devices including a first test device and a second test device. A semiconductor structure can also include a waveform generating circuit, the waveform generating circuit configured for application of a first stress signal waveform having a first duty cycle to the first test device, and a second stress signal waveform having a second duty cycle to the second test device. A semiconductor structure can include a selection circuit associated with each of the first test device and the second test device for switching between a stress cycle and a sensing cycle.