MULTI-DIMENSIONAL MAGNETIC NEGATIVE-STIFFNESS MECHANISM AND MULTI-DIMENSIONAL MAGNETIC NEGATIVE-STIFFNESS VIBRATION ISOLATION SYSTEM COMPOSED THEREOF

    公开(公告)号:US20210293301A1

    公开(公告)日:2021-09-23

    申请号:US17257858

    申请日:2019-10-17

    Abstract: A multi-dimensional magnetic negative-stiffness mechanism and a multi-dimensional magnetic negative-stiffness vibration isolation system composed thereof are provided. The multi-dimensional damping system is composed of a positive-stiffness mechanism, a multi-dimensional negative-stiffness mechanism, a floating frame, a vibration isolated body, and a mounting base. The positive-stiffness mechanism is a traditional elastic element connected to the vibration isolated body and the mounting base, and provides supporting forces in an X direction, a Y direction, and a Z direction, and a basic vibration isolation function. The multi-dimensional negative-stiffness mechanism is composed of at least two negative-stiffness magnetic groups. Each negative-stiffness magnetic group may provide one-dimensional or two-dimensional negative stiffness. Through a series connection of the at least two negative-stiffness magnetic groups, a two-dimensional or three-dimensional negative-stiffness effect may be implemented to improve the vibration isolation performance of the system in multiple dimensions.

    ACTIVE AIRBEARING DEVICE
    2.
    发明申请

    公开(公告)号:US20170082144A1

    公开(公告)日:2017-03-23

    申请号:US15126537

    申请日:2014-04-02

    Abstract: The present invention discloses an active airbearing device, including a airbearing body, a gas film active adjusting unit, a support body detection unit and a drive control unit, wherein the support body detection device measures a state of airbearing, the drive control system generates a control signal according to a detection signal, drives and controls the gas film active adjusting device to generate an active action, and dynamically adjusts the form of gas films on a airbearing surface, so as to dynamically adjust pressure distribution of gaps between the gas films of the airbearing device, thereby improving dynamic stiffness characteristics of the airbearing. Through the present invention, the dynamic stiffness characteristics of the airbearing can be improved significantly, and the purpose of stabilizing the airbearing is achieved; in addition, the active airbearing device according to the present invention also has the characteristics of a compact structure, convenient operation and control, and high precision, and thus is especially suitable for occasions such as ultra-precision machining or high speed spindle which has high requirements for dynamic stiffness of support.

Patent Agency Ranking