Abstract:
A combined additive manufacturing method applicable to parts and molds relates to moldless-growth manufacturing of parts and molds, which includes steps of: S1: layering and slicing a three-dimensional CAD (computer-aided design) model of a workpiece to be formed according to shape, thickness and dimensional accuracy requirements of the workpiece, so as to obtain a plurality of layered slice data; S2: planning a forming path according to the layered slice data, and generating layered slice numerical control codes for forming; and S3: deposition-forming a powder material on a substrate layer-by-layer and performing pressure forming or milling forming according to the layered slice numerical control codes in the step S2, which uses a numerically controlled high-speed cold spray gun to spray the powder material to a determined position for deposition-forming. The method of the present invention overcomes thermally induced adverse effects of hot processing and drawbacks of cold spray deposition.
Abstract:
A combined additive manufacturing method applicable to parts and molds relates to moldless-growth manufacturing of parts and molds, which includes steps of: S1: layering and slicing a three-dimensional CAD (computer-aided design) model of a workpiece to be formed according to shape, thickness and dimensional accuracy requirements of the workpiece, so as to obtain a plurality of layered slice data; S2: planning a forming path according to the layered slice data, and generating layered slice numerical control codes for forming; and S3: deposition-forming a powder material on a substrate layer-by-layer and performing pressure forming or milling forming according to the layered slice numerical control codes in the step S2, which uses a numerically controlled high-speed cold spray gun to spray the powder material to a determined position for deposition-forming. The method of the present invention overcomes thermally induced adverse effects of hot processing and drawbacks of cold spray deposition.
Abstract:
The present invention belongs to the field of multi-material additive manufacturing (AM), and in particular discloses a forming system and method of hybrid AM and surface coating. The hybrid forming system includes an additive forming device, a laser-assisted cold spraying (LACS) device and a workbench. The additive forming device and the LACS device are located above the workbench. During manufacturing, the additive forming device forms a part to be formed on the workbench layer by layer, and the LACS device performs coating peening treatment on inner and outer surfaces of the part to be formed during the forming process, thereby jointly completing the composite manufacturing of the part to be formed. The present invention makes full use of the rapid prototyping advantage of the short-flow AM process, and integrates the surface coating peening process into the hybrid forming system.
Abstract:
The present invention belongs to the field of multi-material additive manufacturing (AM), and in particular discloses a forming system and method of hybrid AM and surface coating. The hybrid forming system includes an additive forming device, a laser-assisted cold spraying (LACS) device and a workbench. The additive forming device and the LACS device are located above the workbench. During manufacturing, the additive forming device forms a part to be formed on the workbench layer by layer, and the LACS device performs coating peening treatment on inner and outer surfaces of the part to be formed during the forming process, thereby jointly completing the composite manufacturing of the part to be formed. The present invention makes full use of the rapid prototyping advantage of the short-flow AM process, and integrates the surface coating peening process into the hybrid forming system.
Abstract:
A method for manufacturing parts and molds by: 1) slicing a three-dimensional CAD model of a part or mold; 2) planning a modeling path according to slicing data of the three-dimensional CAD model, whereby generating numerical control codes for modeling processing; and 3) performing fused deposition modeling of powders or wire material of metal, intermetallic compounds, ceramic and composite functional gradient materials by layer using a welding gun on a substrate layer via a numerical control gas shielded welding beam or laser beam according to a track specified by the numerical control code for each layer. A micro-roller or a micro-extrusion unit is installed at a contact area between melted and softened areas. The micro-roller or the micro-extrusion unit synchronously moves along with fused deposition area, which results in compressing and processing of the fused deposition area during the fused deposition modeling.