Abstract:
The invention discloses a method for in-vivo temperature measurement based on AC magnetization of magnetic nanoparticles, and relates to a nano test technology field. The invention positions magnetic nano agent at an area of a measured object, applies an AC excitation magnetic field to the area of the magnetic nano agent, collects an AC magnetization signal of the magnetic nano agent under the AC excitation magnetic field, detects amplitudes of odd harmonics of the AC magnetization signal, and finally calculates in-vivo temperature according to a relationship between the odd harmonics and the in-vivo temperature. The invention predetermines the relationship between the odd harmonics and the in-vivo temperature via the discrete Langevin's function and the Fourier transformation, solves the in-vivo temperature according to the relationship without considering concentration of the magnetic nanoparticles, and effective moment as temperature varies, and thus accurately detecting the in-vivo temperature.
Abstract:
Provided is a magnetic nano temperature measurement method under a triangle wave excitation magnetic field relating to a technical field of nano measurement. The method further comprises steps of: (1) positioning a magnetic nano sample at a measured object; (2) applying a triangle wave excitation magnetic field on area of the magnetic nano sample; (3) detecting a triangle wave excitation magnetic field-time curve and a magnetization-time curve of the magnetic nano sample; (4) obtaining a magnetizing curve of the magnetic nano sample, namely excitation magnetic field-magnetization curve, by the triangle wave excitation magnetic field curve and the magnetization curve, and sampling the magnetizing curve to obtain magnetization Mi of the magnetic nano sample under excitation magnetic field Hi; and (5) determining temperature of the measured object by curve fitting with excitation magnetic field Hi as input, magnetization Mi as output, and a relationship between the excitation magnetic field and the magnetization as objective function. The invention obtains a magnetizing curve rapidly using a triangle wave excitation magnetic field, and realizes real-time and precise temperature measurement based on magnetic nanoparticles by inversion algorithms according to the magnetizing curve based on a temperature measurement model of magnetic nanoparticles under a DC magnetic field.
Abstract:
The invention discloses a method for in-vivo temperature measurement based on AC magnetization of magnetic nanoparticles, and relates to a nano test technology field. The invention positions magnetic nano agent at an area of a measured object, applies an AC excitation magnetic field to the area of the magnetic nano agent, collects an AC magnetization signal of the magnetic nano agent under the AC excitation magnetic field, detects amplitudes of odd harmonics of the AC magnetization signal, and finally calculates in-vivo temperature according to a relationship between the odd harmonics and the in-vivo temperature. The invention predetermines the relationship between the odd harmonics and the in-vivo temperature via the discrete Langevin's function and the Fourier transformation, solves the in-vivo temperature according to the relationship without considering concentration of the magnetic nanoparticles, and effective moment as temperature varies, and thus accurately detecting the in-vivo temperature.
Abstract:
Provided is a noninvasive measuring method for rapid temperature variation under a DC excitation magnetic field, comprising: (1) positioning ferromagnetic particles at a measured object; (2) applying a DC magnetic field to area of the ferromagnetic particles enabling the ferromagnetic particles to reach saturation magnetization state; (3) obtaining steady temperature T1 of the measured object at room temperature, and calculating initial spontaneous magnetization M1, of the ferromagnetic particles according to the steady temperature T1; (4) detecting amplitude A of a magnetization variation signal of the ferromagnetic particles after temperature of the measured object varies, and calculating temperature T2 after change according to the amplitude A of the magnetization variation signal; and (5) calculating temperature variation ΔT=T2-T1 according to the temperature T2 after change and the steady temperature T1. The present invention can realize noninvasive temperature measurement with high speed and high accuracy so as to resolve technical problems of low speed and low precision.
Abstract:
The present disclosure relates to methods and systems for magnetic nanoparticle temperature imaging. Particularly, the present methods involve applying different combinations of magnetic fields to magnetic nanoparticles placed in a one-dimensional space, collecting AC magnetization signals of the magnetic nanoparticles, and analyzing the collected signals to obtain in vivo temperature information of the one-dimensional space. Different exciting magnetic fields are applied to the magnetic nanoparticles, so that one-dimensional temperature imaging is transformed into single-point temperature measurement of each minizone, and one-dimensional temperature imaging can be precisely and quickly achieved without knowing the concentration distribution of the magnetic nanoparticles.