METHOD AND SYSTEM FOR IN-VIVO TEMPERATURE MEASUREMENT BASED ON AC MAGNETIZATION OF MAGNETIC NANOPARTICLE
    1.
    发明申请
    METHOD AND SYSTEM FOR IN-VIVO TEMPERATURE MEASUREMENT BASED ON AC MAGNETIZATION OF MAGNETIC NANOPARTICLE 有权
    基于磁性纳米粒子交流磁化的体内温度测量方法与系统

    公开(公告)号:US20150045691A1

    公开(公告)日:2015-02-12

    申请号:US14232600

    申请日:2013-06-25

    CPC classification number: A61B5/01 A61B5/0515 G01K7/36 G01K13/002 G06F17/16

    Abstract: The invention discloses a method for in-vivo temperature measurement based on AC magnetization of magnetic nanoparticles, and relates to a nano test technology field. The invention positions magnetic nano agent at an area of a measured object, applies an AC excitation magnetic field to the area of the magnetic nano agent, collects an AC magnetization signal of the magnetic nano agent under the AC excitation magnetic field, detects amplitudes of odd harmonics of the AC magnetization signal, and finally calculates in-vivo temperature according to a relationship between the odd harmonics and the in-vivo temperature. The invention predetermines the relationship between the odd harmonics and the in-vivo temperature via the discrete Langevin's function and the Fourier transformation, solves the in-vivo temperature according to the relationship without considering concentration of the magnetic nanoparticles, and effective moment as temperature varies, and thus accurately detecting the in-vivo temperature.

    Abstract translation: 本发明公开了一种基于磁性纳米颗粒的交流磁化的体内温度测量方法,涉及纳米测试技术领域。 本发明将磁性纳米剂定位在被测物体的一个区域,对磁性纳米颗粒区域施加交流励磁磁场,在交流励磁磁场下收集磁性纳米颗粒的交流磁化信号,检测奇数的振幅 交流磁化信号的谐波,并且最终根据奇次谐波和体内温度之​​间的关系来计算体内温度。 本发明通过离散Langevin函数和傅立叶变换来预先确定奇次谐波与体内温度之​​间的关系,根据关系解决体内温度,而不考虑磁性纳米粒子的浓度,以及温度变化时的有效力矩, 从而精确地检测体内温度。

    Magnetic nano temperature measurement method using triangle wave excitation magnetic field
    2.
    发明授权
    Magnetic nano temperature measurement method using triangle wave excitation magnetic field 有权
    磁性纳米温度测量方法采用三角波激励磁场

    公开(公告)号:US09534963B2

    公开(公告)日:2017-01-03

    申请号:US14412443

    申请日:2013-12-14

    CPC classification number: G01K7/36 A61B5/01 A61B5/05 A61B2562/0285

    Abstract: Provided is a magnetic nano temperature measurement method under a triangle wave excitation magnetic field relating to a technical field of nano measurement. The method further comprises steps of: (1) positioning a magnetic nano sample at a measured object; (2) applying a triangle wave excitation magnetic field on area of the magnetic nano sample; (3) detecting a triangle wave excitation magnetic field-time curve and a magnetization-time curve of the magnetic nano sample; (4) obtaining a magnetizing curve of the magnetic nano sample, namely excitation magnetic field-magnetization curve, by the triangle wave excitation magnetic field curve and the magnetization curve, and sampling the magnetizing curve to obtain magnetization Mi of the magnetic nano sample under excitation magnetic field Hi; and (5) determining temperature of the measured object by curve fitting with excitation magnetic field Hi as input, magnetization Mi as output, and a relationship between the excitation magnetic field and the magnetization as objective function. The invention obtains a magnetizing curve rapidly using a triangle wave excitation magnetic field, and realizes real-time and precise temperature measurement based on magnetic nanoparticles by inversion algorithms according to the magnetizing curve based on a temperature measurement model of magnetic nanoparticles under a DC magnetic field.

    Abstract translation: 提供了一种与纳米测量技术领域相关的三角波激励磁场下的磁性纳米温度测量方法。 该方法还包括以下步骤:(1)将磁性纳米样品定位在测量对象处; (2)在磁性纳米样品的面积上施加三角波激发磁场; (3)检测磁性纳米样品的三角波激发磁场时间曲线和磁化时间曲线; (4)通过三角波激励磁场曲线和磁化曲线获得磁性纳米样品的励磁磁化曲线,即励磁磁场磁化曲线,并对磁化曲线进行采样,以获得磁性纳米样品在激发下的磁化强度 磁场Hi (5)通过以激励磁场Hi作为输入,磁化Mi作为输出的曲线拟合以及激励磁场与磁化之间的关系作为目标函数来确定测量对象的温度。 本发明使用三角波激发磁场快速获得磁化曲线,并且通过基于磁性纳米颗粒在直流磁场下的温度测量模型的磁化曲线的反演算法,实现基于磁性纳米粒子的实时和精确的温度测量 。

    Method and system for in-vivo temperature measurement based on AC magnetization of magnetic nanoparticle
    3.
    发明授权
    Method and system for in-vivo temperature measurement based on AC magnetization of magnetic nanoparticle 有权
    基于磁性纳米颗粒的交流磁化的体内温度测量方法和系统

    公开(公告)号:US09301693B2

    公开(公告)日:2016-04-05

    申请号:US14232600

    申请日:2013-06-25

    CPC classification number: A61B5/01 A61B5/0515 G01K7/36 G01K13/002 G06F17/16

    Abstract: The invention discloses a method for in-vivo temperature measurement based on AC magnetization of magnetic nanoparticles, and relates to a nano test technology field. The invention positions magnetic nano agent at an area of a measured object, applies an AC excitation magnetic field to the area of the magnetic nano agent, collects an AC magnetization signal of the magnetic nano agent under the AC excitation magnetic field, detects amplitudes of odd harmonics of the AC magnetization signal, and finally calculates in-vivo temperature according to a relationship between the odd harmonics and the in-vivo temperature. The invention predetermines the relationship between the odd harmonics and the in-vivo temperature via the discrete Langevin's function and the Fourier transformation, solves the in-vivo temperature according to the relationship without considering concentration of the magnetic nanoparticles, and effective moment as temperature varies, and thus accurately detecting the in-vivo temperature.

    Abstract translation: 本发明公开了一种基于磁性纳米颗粒的交流磁化的体内温度测量方法,涉及纳米测试技术领域。 本发明将磁性纳米剂定位在被测物体的一个区域,对磁性纳米颗粒区域施加交流励磁磁场,在交流励磁磁场下收集磁性纳米颗粒的交流磁化信号,检测奇数的振幅 交流磁化信号的谐波,并且最终根据奇次谐波和体内温度之​​间的关系来计算体内温度。 本发明通过离散Langevin函数和傅立叶变换来预先确定奇次谐波与体内温度之​​间的关系,根据关系解决体内温度,而不考虑磁性纳米粒子的浓度,以及温度变化时的有效力矩, 从而精确地检测体内温度。

    Noninvasive measuring method for rapid temperature variation under DC excitation magnetic field

    公开(公告)号:US09958342B2

    公开(公告)日:2018-05-01

    申请号:US14766111

    申请日:2014-09-11

    CPC classification number: G01K7/38 G01K7/36 G01R33/0213

    Abstract: Provided is a noninvasive measuring method for rapid temperature variation under a DC excitation magnetic field, comprising: (1) positioning ferromagnetic particles at a measured object; (2) applying a DC magnetic field to area of the ferromagnetic particles enabling the ferromagnetic particles to reach saturation magnetization state; (3) obtaining steady temperature T1 of the measured object at room temperature, and calculating initial spontaneous magnetization M1, of the ferromagnetic particles according to the steady temperature T1; (4) detecting amplitude A of a magnetization variation signal of the ferromagnetic particles after temperature of the measured object varies, and calculating temperature T2 after change according to the amplitude A of the magnetization variation signal; and (5) calculating temperature variation ΔT=T2-T1 according to the temperature T2 after change and the steady temperature T1. The present invention can realize noninvasive temperature measurement with high speed and high accuracy so as to resolve technical problems of low speed and low precision.

Patent Agency Ranking