Abstract:
According to various aspects and embodiments, a system and method for treating, storing, and delivering one or more liquids is provided. The systems and methods may utilize a water treatment assembly comprising a tank that includes an internal flow structure, a telescopic fitting, and a multi-port head fitting.
Abstract:
Systems and methods for controlling mixing between one or more fluids are provided. The systems and methods may utilize a vessel comprising one or more zones product where the zones are configured to minimize mixing between one or more fluids. Certain systems and methods may utilize a vessel comprising a tortuous flow path. Other systems and methods may utilize a vessel comprising one or more zones.
Abstract:
Systems and methods for controlling mixing between one or more fluids are provided. The systems and methods may utilize a vessel comprising one or more zones where the zones are configured to minimize mixing between one or more fluids. Certain systems and methods may utilize a vessel comprising a tortuous flow path. Other systems and methods may utilize a vessel comprising one or more zones.
Abstract:
A valve assembly for controlling fluid flow is provided. The valve assembly includes a housing having a first chamber and a second chamber, an actuator assembly configured to move between a first position and a second position within the first and second chambers, a plurality of fluid ports in fluid communication with the first chamber, and a plurality of fluid ports in fluid communication with the second chamber. The first position of the actuator assembly defines a first series of fluid flowpaths through the plurality of fluid ports of the first and second chambers. The second position of the actuator assembly defines a second series of fluid flowpaths through the plurality of fluid ports of the first and second chambers.
Abstract:
Systems and methods for treating water are provided. The systems and methods may utilize an electrochemical water treatment device comprising ion exchange membranes. In certain systems and methods, a concentrate stream and a dilution stream may be in fluid communication with ion exchange membranes. The ion exchange membranes may be configured to provide a ratio of a pH of the concentrate stream and a pH of the dilution stream to be less than about 1.0. In some instances, the LSI of the concentrate stream may be less than or about 1.0. In certain instances, the electrochemical water treatment device does not require a reverse polarity cycle.
Abstract:
Systems and methods for treating water are provided. In certain examples, the water to be treated is seawater. The systems and methods may utilize an electrochemical water treatment device comprising ion exchange membranes. In at least one example, the electrochemical water treatment device may be configured to perform a desalination process on seawater. In some examples, the ion exchange membranes may be configured to provide a ratio of a pH of the concentrate stream and a pH of the dilution stream to be in a range of from about 0.9 to about 1.2.
Abstract:
Systems and methods for treating water are provided. The systems and methods may utilize an electrochemical water treatment device comprising ion exchange membranes. In certain systems and methods, a concentrate stream and a dilution stream may be in fluid communication with ion exchange membranes. The ion exchange membranes may be configured to provide a ratio of a pH of the concentrate stream and a pH of the dilution stream to be less than about 1.0. In some instances, the LSI of the concentrate stream may be less than or about 1.0. In certain instances, the electrochemical water treatment device does not require a reverse polarity cycle.
Abstract:
The methods and systems disclosed here relate to treating water. In certain embodiments, a treatment system comprises an electrochemical water treatment device, a recirculating concentrate stream in fluid communication with the electrochemical water treatment device, a flow control device in fluid communication with a first flow path comprising acidic water and configured to be in fluid communication with the recirculating concentrate stream, and a second flow path comprising feed water and configured to be in fluid communication with the recirculating concentrate stream, and a control system in communication with the flow control device. The treatment system may further comprise a recirculating dilution stream in fluid communication with a second inlet and a second outlet of the electrochemical water treatment device.
Abstract:
A control system is configured to remotely read data associated with a process system in real time and perform various functions associated with the obtained data. The data may be stored to a database and/or analyzed to provide various operating parameters to one or more remote clients.
Abstract:
The methods and systems disclosed here relate to treating water. In certain embodiments, a treatment system comprises an electrochemical water treatment device, a recirculating concentrate stream in fluid communication with the electrochemical water treatment device, a flow control device in fluid communication with a first flow path comprising acidic water and configured to be in fluid communication with the recirculating concentrate stream, and a second flow path comprising feed water and configured to be in fluid communication with the recirculating concentrate stream, and a control system in communication with the flow control device. The treatment system may further comprise a recirculating dilution stream in fluid communication with a second inlet and a second outlet of the electrochemical water treatment device.