Abstract:
A heat exchange structure includes: two flow channels stacked in a stacking direction (Y direction) and thermally coupled to each other; and a fin structure detachably installed in at least one flow channel of the two flow channels. The fin structure includes fins arranged in a longitudinal direction (Z direction) of the at least one flow channel in which the fin structure is installed, the fins configured to form openings alternately arranged along the at least one flow channel on one side and the other side of the at least one flow channel in a width direction (X direction).
Abstract:
Provided is a reactor in which a catalyst to accelerate reaction of a reactant is allowed to act on a reaction fluid having the reactant. The reactor has a partition that defines, in a parallel form, a plurality of reaction flow passages through which the reaction fluid flows, and a plurality of catalyst structures, each having a catalyst and being respectively provided in each of the plurality of reaction flow passages. The partition has a communicating portion allowing the plurality of reaction flow passages to communicate mutually.
Abstract:
A reactor has a heat exchanging body including therein a heat medium flow channel in which heat medium flows, and a reaction flow channel in which a reaction fluid flows, to exchange heat between the heat medium and the reaction fluid. A heat transfer promoter is provided in the heat medium flow channel and comes in close contact with the heat exchanging body to promote heat transfer between the heat medium and the heat exchanging body. The heat transfer promoter is an assembly of partial heat transfer promoters of a plurality of types. Replacing the partial heat transfer promoter with another type one, temperature distribution in the heat exchanging body is adjusted.
Abstract:
A catalyst structure is provided in a reaction-side flow passage of a reactor through which a fluid as a reaction object flows. The catalyst structure includes: a plurality of pillar-shaped pin rods extending in a direction intersecting with a flow direction of the fluid in the reaction-side flow passage; and a catalyst carried on surfaces of the pin rods to promote a reaction of the fluid.
Abstract:
A reactor includes a reaction-side flow passage through which a reaction fluid being a fluid constituting a reaction object flows; a temperature controller (heat-medium side flow passage) configured to heat or cool the reaction fluid from outside the reaction-side flow passage; and a catalyst configured to promote a reaction of the reaction fluid, the catalyst provided in the reaction-side flow passage so that a contact area with the reaction fluid is larger on a downstream side than on an upstream side in the reaction-side flow passage.
Abstract:
A heat exchange structure includes: a flow channel thermally coupled with another flow passage stacked on each other in a stacking direction; and a path-configuration portion provided in the flow channel. The path-configuration portion includes wall portions forming a path of a main flow of the fluid, and a porous body provided in the path and having permeability to the fluid.
Abstract:
A jig for inserting a packing into a flow passage of a reactor extending in one direction or for removing the packing from the flow passage, includes: a pair of strip portions extending in parallel with each other, having a length longer than the flow passage; and link portions arranged in an extending direction of the pair of strip portions, linking the pair of strip portions and having lengths with which the pair of strip portions sandwich the packing therebetween.
Abstract:
Provided is a separation device, including: a gas-liquid contact flow passage having a distillate discharge port formed on one end side and a bottom product discharge port formed on another end side; a raw material liquid introduction port formed between the distillate discharge port and the bottom product discharge port in the gas-liquid contact flow passage; a stripping section, which is provided between the raw material liquid introduction port and the bottom product discharge port and is configured to heat a liquid in the gas-liquid contact flow passage; a rectification section, which is provided between the raw material liquid introduction port and the distillate discharge port and is configured to cool a gas in the gas-liquid contact flow passage; and a porous body arranged in the gas-liquid contact flow passage.
Abstract:
A heat exchange structure includes: two flow channels stacked in a stacking direction (Y direction) and thermally coupled to each other; and a fin structure detachably installed in at least one flow channel of the two flow channels. The fin structure includes fins arranged in a longitudinal direction (Z direction) of the at least one flow channel in which the fin structure is installed, the fins configured to form openings alternately arranged along the at least one flow channel on one side and the other side of the at least one flow channel in the stacking direction.
Abstract:
A reactor includes: a heat exchange section including: a first flow channel configured to flow a reaction fluid and a second flow channel configured to flow a heat medium; an introduction path for a temperature sensor, extending from an insertion opening provided on a side surface of the heat exchange section to the first flow channel or the second flow channel; a pipe for a temperature sensor, connected to a side surface of the heat exchange section and communicating with the introduction path through the insertion opening; and a jig provided in the pipe. The jig is provided with a guide hole extending from the base end toward the tip end and opened toward the insertion opening of the introduction path. The guide hole is provided with a tapered hole directed from the base end toward the tip end.