Abstract:
A jig for inserting a packing into a flow passage of a reactor extending in one direction or for removing the packing from the flow passage, includes: a pair of strip portions extending in parallel with each other, having a length longer than the flow passage; and link portions arranged in an extending direction of the pair of strip portions, linking the pair of strip portions and having lengths with which the pair of strip portions sandwich the packing therebetween.
Abstract:
A reactor includes: a main reactor core including main reaction flow channels through which the raw material fluid flows, and main temperature control flow channels through which the heat medium flows along a flow direction of the raw material fluid flowing in the main reaction flow channel; and a pre-reactor core including pre-reaction flow channels of which an outlet side connects with an inlet side of the main reaction flow channels and through which the raw material fluid flows, and pre-temperature control flow channels of which an inlet side connects with an outlet side of the main reaction flow channels and through which the product serving as the heat medium flows along a flow direction of the raw material fluid flowing in the pre-reaction flow channel.
Abstract:
There are provided a stable HAN-based propellant decomposition catalyst in which the heat resistance is sufficient and the change in HAN-based propellant decomposition activity over time is also small so that a HAN-based propellant having low toxicity can be used for a thruster, and a method for producing the same, and a one-component thruster including a HAN-based propellant decomposition catalyst. A HAN-based propellant decomposition catalyst containing a hexaaluminate type oxide containing a platinum group element, and a method for producing the same, and a one-component thruster including a HAN-based propellant decomposition catalyst are used.
Abstract:
A reactor includes: a main reactor core including main reaction flow channels through which the raw material fluid flows, and main temperature control flow channels through which the heat medium flows along a flow direction of the raw material fluid flowing in the main reaction flow channel; and a pre-reactor core including pre-reaction flow channels of which an outlet side connects with an inlet side of the main reaction flow channels and through which the raw material fluid flows, and pre-temperature control flow channels of which an inlet side connects with an outlet side of the main reaction flow channels and through which the product serving as the heat medium flows along a flow direction of the raw material fluid flowing in the pre-reaction flow channel.
Abstract:
A catalyst structure is provided in a reaction-side flow passage of a reactor through which a fluid as a reaction object flows. The catalyst structure includes: a plurality of pillar-shaped pin rods extending in a direction intersecting with a flow direction of the fluid in the reaction-side flow passage; and a catalyst carried on surfaces of the pin rods to promote a reaction of the fluid.
Abstract:
A reactor includes a reaction-side flow passage through which a reaction fluid being a fluid constituting a reaction object flows; a temperature controller (heat-medium side flow passage) configured to heat or cool the reaction fluid from outside the reaction-side flow passage; and a catalyst configured to promote a reaction of the reaction fluid, the catalyst provided in the reaction-side flow passage so that a contact area with the reaction fluid is larger on a downstream side than on an upstream side in the reaction-side flow passage.
Abstract:
A heat exchange structure includes: two flow channels stacked in a stacking direction (Y direction) and thermally coupled to each other; and a fin structure detachably installed in at least one flow channel of the two flow channels. The fin structure includes fins arranged in a longitudinal direction (Z direction) of the at least one flow channel in which the fin structure is installed, the fins configured to form openings alternately arranged along the at least one flow channel on one side and the other side of the at least one flow channel in a width direction (X direction).
Abstract:
An end surface of each first side wall, an end surface of each first middle wall, and an end surface of each first end wall are joined to an adjacent second structure by diffusion bonding, an end surface of each second side wall, an end surface of each second middle wall, and an end surface of each second end wall are joined to an adjacent first structure or a lid structure by diffusion bonding, a thickness of each first side wall is greater than or equal to a thickness of each first middle wall, and a thickness of each second side wall is greater than or equal to a thickness of each second middle wall.
Abstract:
Provided is a reactor in which a catalyst to accelerate reaction of a reactant is allowed to act on a reaction fluid having the reactant. The reactor has a partition that defines, in a parallel form, a plurality of reaction flow passages through which the reaction fluid flows, and a plurality of catalyst structures, each having a catalyst and being respectively provided in each of the plurality of reaction flow passages. The partition has a communicating portion allowing the plurality of reaction flow passages to communicate mutually.
Abstract:
A heat exchange structure includes: two flow channels stacked in a stacking direction (Y direction) and thermally coupled to each other; and a fin structure detachably installed in at least one flow channel of the two flow channels. The fin structure includes fins arranged in a longitudinal direction (Z direction) of the at least one flow channel in which the fin structure is installed, the fins configured to form openings alternately arranged along the at least one flow channel on one side and the other side of the at least one flow channel in the stacking direction.