Abstract:
A system includes a wearable device, a second device remote from and in communication with the wearable device, a processor configured to generate a control signal representative of an event occurring in an environment related to the wearable device and/or the second device, and a haptic output device configured to provide haptic feedback based on the generated control signal.
Abstract:
Systems and methods for rendering a haptic effect at a user input element associated with a haptic output device are provided. A primary range and a secondary range of positions are defined for the user input element associated with the haptic output device. In addition, a boundary range of positions is defined for the user input element associated with the haptic output device, the boundary range partially overlapping each of the primary and secondary ranges. A position of the user input element is monitored, and the haptic effect rendered in response to an entry of the user input element to positions within the boundary range.
Abstract:
The embodiments are directed toward techniques for isolating a user input signal at a haptic output device. A signal originating from a user input element associated with the haptic output device is received. The received signal is separated into a first component including the user input signal, and a second component including a haptic feedback signal. While the first component is processed, the second component can be discarded or otherwise ignored.
Abstract:
The embodiments are directed toward techniques for isolating a user input signal at a haptic output device. A signal originating from a user input element associated with the haptic output device is received. The received signal is separated into a first component including the user input signal, and a second component including a haptic feedback signal. While the first component is processed, the second component can be discarded or otherwise ignored.
Abstract:
An advanced haptic gamepad is provided. A controller having a plurality of surfaces, and a haptic output device located within its housing and coupled to an isolated deformable region disposed at one of the plurality of surfaces is provided. The isolated deformable region expands and contracts in response to the haptic output device. In addition, a controller having a plurality of isolated surface regions, and a plurality of haptic output devices located within its housing and coupled to respective isolated surface regions is provided. Each of the isolated surface regions is configured to provide localized haptic effects.
Abstract:
A system is provided that modifies a haptic effect experienced at a user input element, where the user input element is positioned within the housing so that a first contact with the housing defines a first maximum range of a first movement of the user input element. The system receives a position of a user input element of a peripheral device. The system further sends a haptic effect definition to the haptic output device in response to the received position of the user input element. The system further causes the haptic output device to output a force to the user input element of the peripheral device in response to the haptic effect definition. The system further causes the haptic diminishment prevention to define a first diminishment range of the first movement of the user input element, where the first diminishment range is less than the first maximum range and prevents the first contact with the housing.
Abstract:
A system includes a wearable device, a second device remote from and in communication with the wearable device, a processor configured to generate a control signal representative of an event occurring in an environment related to the wearable device and/or the second device, and a haptic output device configured to provide haptic feedback based on the generated control signal.
Abstract:
An advanced haptic gamepad is provided. A controller having a plurality of surfaces, and a haptic output device located within its housing and coupled to an isolated deformable region disposed at one of the plurality of surfaces is provided. The isolated deformable region expands and contracts in response to the haptic output device. In addition, a controller having a plurality of isolated surface regions, and a plurality of haptic output devices located within its housing and coupled to respective isolated surface regions is provided. Each of the isolated surface regions is configured to provide localized haptic effects.
Abstract:
A system that includes an actuator amplification apparatus and a push pull actuator disposed on or within the actuator amplification apparatus. The actuator amplification apparatus is configured to receive a push pull actuator. The actuator amplification apparatus includes a body fixture configured to attach the actuator amplification apparatus to a fixed mass, an output interface to attach the actuator amplification apparatus to a moving mass, and an integral amplification mechanism. The integral amplification mechanism of the actuator amplification apparatus amplifies a force output by the push pull actuator to the moving mass. The integral amplification mechanism includes a plurality of linkages or an integral lever arm. The actuator amplification apparatus may include stabilizers configured to limit movement of the push pull actuator. In an embodiment, the fixed mass is a dashboard frame of an automobile and the moving mass is a floating haptic touch screen assembly.