Abstract:
The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
Abstract:
The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
Abstract:
A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers are included in the cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth are obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber.
Abstract:
A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers are included in the cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth are obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber.
Abstract:
A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers are included in the cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth are obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber.
Abstract:
A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers are included in the cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth are obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber.