Abstract:
A code disk is adapted to an optical absolute rotary encoder. The code disk is divided into a plurality of columns, with the plurality of columns disposed in a circumferential direction around a center position and respectively extending in a plurality of radial directions. The code disk comprises a plurality of disk sectors sequentially disposed in the circumferential direction around the center position, wherein each of the disk sectors comprises a plurality of code pieces, each of the code pieces comprises an encoded value, each of the encoded values comprises a plurality of bits adopting Manchester code, these bits are arranged in one of the radial directions, and the encoded values of two of the disk sectors are arranged as Gray code.
Abstract:
An optical encoder includes an encoding disk and an optical detector disposed to correspond to the encoding disk. The optical detector includes a plurality of optical sensors arranged to form an optical sensor array. The optical detector is provided to receive light. The optical detector includes at least one optical sensor arranged to form at least one sensor array. The width of the sensor array corresponds to an interpolation period of the optical encoder.
Abstract:
An optical device including a first lens array is provided. The first lens array has micro-lens units arranged in an array. An outline of each of the micro-lens units is polygonal-shaped, circular or ellipsoidal. Moreover, a projection apparatus is also provided.
Abstract:
A projector device is provided. The projector device includes a projector unit, an optical beam splitting module and a first image forming element. The projector unit forms a beam projecting image. The horizontal projection width of the beam projecting image is smaller than the vertical projection width of the beam projecting image. The optical beam splitting module projects one or multiple projection sub-images according to the beam projecting image. The projection sub-images are projected to the first image forming element to form one or multiple projection images. Thus, the projector device obtains multiple projection images from a single image source, and the placement of the image forming elements in the projector unit may be adjusted to obtain the projection images with the best image ratios and the best resolutions. The projector device may be suitable for a head up display.
Abstract:
An optical encoder includes a light emitting module, a positioning device and a light separating structure. The light emitting module emits a light beam illuminating an illumination area of the positioning device. The positioning device includes light penetrating areas arranged in a dislocation manner. The light penetrating areas sequentially move into the illumination area. The light separating structure is disposed in the path of the light beam. The positioning device is disposed between the light emitting module and the light separating structure. When part of the light beam penetrates one of these light penetrating areas and is transmitted to the light separating structure, the light separating structure transmits the light to a sensing area and forms at least one first positioning optical pattern. The distance between two first positioning optical patterns formed by two adjacent light penetrating areas is greater than the pitch between the two adjacent light penetrating areas.
Abstract:
An optical scanning projection module includes a scanning light component including a plurality of sub light sources and at least one light-splitting element, a main light reflective element, a scanning element and a photosensitive element. Sub light beams of the sub light sources are converged to form a main light beam. One of the sub light beams travels to the light-delivering element to form a partial reflective light beam and a partial penetrating light beam. With a scanning manner, the partial reflective light beam or the partial penetrating light beam is reflected by the scanning element to be an inspection light, and the main light beam is reflected by the scanning element to be a projection light. The photosensitive element outputs a sensing signal according to the inspection light. Thus, the optical scanning projection module controls the operation of the scanning light component according to the sensing signal.
Abstract:
A light-emitting device with a sensing function is provided. The light-emitting device includes a substrate, a first light-emitting-diode die, and a first photosensitive element. The first light-emitting-diode die is disposed on the substrate and includes a main light-emitting top surface and a side light-emitting surface surrounding the main light-emitting top surface. The first photosensitive element is disposed on the substrate and includes a photosensitive surface. The photosensitive surface is parallel to the main light-emitting top surface. A distance between the main light-emitting top surface and the substrate is greater than a distance between the photosensitive surface and the substrate distance.
Abstract:
An optical encoding device includes a light source module, an encoding disc, and a photodetector. The light source module emits a source beam. The encoding disc is disposed on a passing path of the source beam. The encoding disc has first diffracting patterns. The first diffracting patterns include a plurality of sets of first diffracting patterns arranged along a radial direction of the encoding disc. Each set of the first diffracting patterns includes a plurality kinds of first diffracting patterns having different pattern extending directions and different pattern periods. When the encoding disc is rotating, the first diffracting patterns in each set of first diffracting patterns enter the passing path of the source beam in sequence, to cause a diffraction and form diffracted beams having different angles. The photodetector receives the diffracted beams having the different angles.
Abstract:
An optical device including a first lens array is provided. The first lens array has micro-lens units arranged in an array. An outline of each of the micro-lens units is polygonal-shaped, circular or ellipsoidal. Moreover, a projection apparatus is also provided.
Abstract:
A projector device is provided. The projector device includes a projector unit, an optical beam splitting module and a first image forming element. The projector unit forms a beam projecting image. The horizontal projection width of the beam projecting image is smaller than the vertical projection width of the beam projecting image. The optical beam splitting module projects one or multiple projection sub-images according to the beam projecting image. The projection sub-images are projected to the first image forming element to form one or multiple projection images. Thus, the projector device obtains multiple projection images from a single image source, and the placement of the image forming elements in the projector unit may be adjusted to obtain the projection images with the best image ratios and the best resolutions. The projector device may be suitable for a head up display.