Abstract:
An aluminum alloy melt is manufactured by adopting an aluminum alloy powder through laser laminated manufacturing. The aluminum alloy powder includes Si: 2.0-4.5 wt %; Mg: 0.1-1.3 wt %; Fe: 0.07-0.65 wt %; Cu: 0.35 wt % or less; Cr: 0.02-0.32 wt %; Zn: 0.23 wt % or less; Ti: 0.23 wt % or less; Mn: 0.13 wt % or less; and the rest is aluminum. The aluminum alloy powder further includes inevitable impurities.
Abstract:
An aluminum alloy material includes 1.2 wt % to 3.0 wt % of Si, 0.1 wt % to 0.8 wt % of Mg, 0.2 wt % to 2.0 wt % of Cu, 0.5 wt % to 2.5 wt % of Zn, 0.2 wt % to 2.0 wt % of Ti, and the remainder being Al and inevitable impurities. The powder of the aluminum alloy material can be processed to form an aluminum alloy object. The aluminum alloy object may further include an anodized film on its surface.
Abstract:
A permanent magnetic alloy powder includes rare earth elements, iron, boron, aluminum, copper and carbides. The rare earth elements include neodymium, and account for 24 to 30 parts by weight. Iron accounts for 65 to 72 parts by weight. Boron accounts for 0.8 to 1.2 parts by weight. Cobalt accounts for 2.8 to 3.2 parts by weight. Aluminum accounts for 0.2 to 0.6 parts by weight. Copper accounts for 0.1 to 0.4 parts by weight. The carbides account for 0.1 to 0.4 parts by weight. The particle size of the permanent magnetic alloy powders is 10 μm to 70 μm, and the grain size of NdFeB phase in the permanent magnetic alloy powders is less than 5 μm. Through the selection of alloy material ratio and manufacturing process, the processability and formability of permanent magnetic alloy materials can be effectively improved, suitable for metal injection molding and 3D printing production.
Abstract:
An aluminum alloy wheel for a vehicle is provided, which includes: a wheel central portion, a rim portion, and a plurality of radial elements, wherein the aluminum alloy wheel is processed by centrifugal casting and forging to form a central portion with a morphology exhibiting a grain size variation with decreasing gradient in a lateral direction from an inner side of the wheel central portion to an outer side thereof.
Abstract:
An aluminum-cobalt-chromium-iron-nickel-silicon alloy has atomic percentages of 4-12 at % aluminum, 15-25 at % cobalt, 25-35 at % chromium, 4-8 at % iron, 15-25 at % nickel, 10-25 at % silicon, wherein the atomic percentage of aluminum plus silicon is between 18-32 at %. The disclosure applies the alloy design to develop a low-aluminum Al—Co—Cr—Fe—Ni—Si alloy composition, and has high-temperature hardness, high wear resistance, corrosion resistance and high temperature oxidation resistance.
Abstract:
An aluminum alloy powder for laser laminated manufacturing includes Si: 2.0-4.5 wt %; Mg: 0.1-1.3 wt %; Fe: 0.07-0.65 wt %; Cu: 0.35 wt % or less; Cr: 0.02-0.32 wt %; Zn: 0.23 wt % or less; Ti: 0.23 wt % or less; Mn: 0.13 wt % or less; and the rest is aluminum. The aluminum alloy powder further includes inevitable impurities.
Abstract:
An aluminum alloy wheel for a vehicle is provided, which includes: a wheel central portion, a rim portion, and a plurality of radial elements, wherein the aluminum alloy wheel is processed by centrifugal casting and forging to form a central portion with a morphology exhibiting a grain size variation with decreasing gradient in a lateral direction from an inner side of the wheel central portion to an outer side thereof.
Abstract:
A multi-element alloy material consists of Al, Cr, Fe, Mn, Mo and Ni. From an outer surface to a center of the multi-element alloy material exhibits a hardness gradient from high to low. A method of manufacturing a multi-element alloy material with hardness gradient includes melting and casting metals with a metal combination of Al, Cr, Fe, Mn, Mo and Ni to form an alloy body, subjecting the alloy body to a homogenization treatment, and subjecting the homogenized alloy body to a high temperature treatment to perform precipitation hardening at surface of the alloy body by heating, thereby forming a multi-element alloy material having hardness gradient.
Abstract:
A multi-element alloy material consists of Al, Cr, Fe, Mn, Mo and Ni. From an outer surface to a center of the multi-element alloy material exhibits a hardness gradient from high to low. A method of manufacturing a multi-element alloy material with hardness gradient includes melting and casting metals with a metal combination of Al, Cr, Fe, Mn, Mo and Ni to form an alloy body, subjecting the alloy body to a homogenization treatment, and subjecting the homogenized alloy body to a high temperature treatment to perform precipitation hardening at surface of the alloy body by heating, thereby forming a multi-element alloy material having hardness gradient.