Abstract:
A method for fabricating semiconductor packages includes providing a first substrate having an aperture, providing a first semiconductor chip, connecting the first semiconductor chip to the first substrate, filling the aperture with a first insulating material and encapsulating the semiconductor chip with a second insulating material to create a first encapsulation body.
Abstract:
A method for fabricating an electronic device includes providing a first semiconductor chip and a second semiconductor chip. The first semiconductor chip has a first semiconductor die and a first solder interconnect layer applied to a main face of the first semiconductor die. The second semiconductor chip has a second semiconductor die, an insulating layer applied to a main face of the second semiconductor die, and a second solder interconnect layer applied to the insulating layer. The method further includes attaching the first semiconductor chip with the first solder interconnect layer to a first carrier and attaching the second semiconductor chip with the second solder interconnect layer to a second carrier.
Abstract:
A radiation source device includes at least one membrane layer, a radiation source structure to emit electromagnetic or infrared radiation, a substrate and a spacer structure, wherein the substrate and the at least one membrane form a chamber, wherein a pressure in the chamber is lower than or equal to a pressure outside of the chamber, and wherein the radiation source structure is arranged between the at least one membrane layer and the substrate.
Abstract:
A method for fabricating semiconductor packages includes providing a first substrate having an aperture, providing a first semiconductor chip, connecting the first semiconductor chip to the first substrate, filling the aperture with a first insulating material and encapsulating the semiconductor chip with a second insulating material to create a first encapsulation body.
Abstract:
A molded semiconductor package includes: a mold compound; a metal substrate partly embedded in the mold compound; at least one first metal lead partly embedded in the mold compound; an inlay embedded in the mold compound, the inlay comprising a semiconductor die embedded in an electrically insulating body, a first metal structure attached to a first side of the semiconductor die, and a second metal structure attached to a second side of the semiconductor die; and a metal clip at least partly embedded in the mold compound and connecting the second metal structure to the at least one first metal lead. The semiconductor die has a maximum junction temperature higher than a glass transition temperature of the mold compound, the electrically insulating body has a glass transition temperature at or above the maximum junction temperature of the semiconductor die, and the metal substrate is attached to the first metal structure.
Abstract:
A microelectromechanical systems (MEMS) package assembly and a method of manufacturing the same is provided. The MEMS package assembly includes a substrate, a housing coupled to the substrate to form a cavity, wherein the housing includes a transparent plate disposed above and parallel to the substrate and is configured to permit a transmission of light therethrough, and a MEMS chip disposed within the cavity and including a first main surface proximal to the transparent plate and a second main surface opposite to the first main surface and coupled to the substrate. The MEMS chip is oriented such that the first main surface is tilted at a tilt angle with respect to the transparent plate.
Abstract:
A semiconductor device and a method of making a semiconductor device are disclosed. The semiconductor device comprises a redistribution layer arranged over a chip, the redistribution layer comprising a first redistribution line. The semiconductor further comprises an isolation layer disposed over the redistribution layer, the isolation layer having a first opening forming a first pad area and a first interconnect located in the first opening and in contact with the first redistribution line.
Abstract:
A molded semiconductor package includes: a mold compound; a metal substrate partly embedded in the mold compound; at least one first metal lead partly embedded in the mold compound; an inlay embedded in the mold compound, the inlay comprising a semiconductor die embedded in an electrically insulating body, a first metal structure attached to a first side of the semiconductor die, and a second metal structure attached to a second side of the semiconductor die; and a metal clip at least partly embedded in the mold compound and connecting the second metal structure to the at least one first metal lead. The semiconductor die has a maximum junction temperature higher than a glass transition temperature of the mold compound, the electrically insulating body has a glass transition temperature at or above the maximum junction temperature of the semiconductor die, and the metal substrate is attached to the first metal structure.
Abstract:
A microelectromechanical systems (MEMS) package assembly and a method of manufacturing the same is provided. The MEMS package assembly includes a substrate, a housing coupled to the substrate to form a cavity, wherein the housing includes a transparent plate disposed above and parallel to the substrate and is configured to permit a transmission of light therethrough, and a MEMS chip disposed within the cavity and including a first main surface proximal to the transparent plate and a second main surface opposite to the first main surface and coupled to the substrate. The MEMS chip is oriented such that the first main surface is tilted at a tilt angle with respect to the transparent plate.
Abstract:
A method for fabricating an electronic device includes providing a first semiconductor chip and a second semiconductor chip. The first semiconductor chip has a first semiconductor die and a first solder interconnect layer applied to a main face of the first semiconductor die. The second semiconductor chip has a second semiconductor die, an insulating layer applied to a main face of the second semiconductor die, and a second solder interconnect layer applied to the insulating layer. The method further includes attaching the first semiconductor chip with the first solder interconnect layer to a first carrier and attaching the second semiconductor chip with the second solder interconnect layer to a second carrier.