Abstract:
An apparatus may include a memory to store one or more graphics rendering commands in a queue after generation. The apparatus may also include a processor circuit, and a graphics rendering command manager for execution on the processor to dynamically determine at one or more instances a total execution duration for the one or more graphics rendering commands, where the total execution duration comprises a total time to render the one or more graphics rendering commands. The graphics rendering command manager also may be for execution on the processor to generate a signal to transmit the one or more graphics rendering commands for rendering by a graphics processor when the total execution duration exceeds a graphics rendering command execution window.
Abstract:
An apparatus may include a memory to store one or more graphics rendering commands in a queue after generation. The apparatus may also include a processor circuit, and a graphics rendering command manager for execution on the processor to dynamically determine at one or more instances a total execution duration for the one or more graphics rendering commands, where the total execution duration comprises a total time to render the one or more graphics rendering commands. The graphics rendering command manager also may be for execution on the processor to generate a signal to transmit the one or more graphics rendering commands for rendering by a graphics processor when the total execution duration exceeds a graphics rendering command execution window.
Abstract:
An apparatus, touch controller, and system for adaptive touch scanning is described herein. The apparatus includes logic to calculate a distance traveled between two consecutive touch samples, and logic to compare the distance traveled with a target distance to find an actual error. The apparatus also includes logic to update the scan rate based on the actual error.
Abstract:
Data transmission for display partial update. An embodiment of an apparatus includes a display controller to transfer pixel data from a frame buffer to a video display and to select a granularity of a plurality of granularities for units of data for the transfer of the pixel data, and a detection element to track updates to the frame buffer, the detection element to identify at least a first damage area of the pixel data that has been changed from a previous image, wherein the display controller is to provide the video display with the identified first damage area of the pixel data in more or more units of data of the chosen granularity.
Abstract:
Embodiments of partial update for a wireless display device include providing an update information message identifying a location of the partial update and the changed image data. A display source identifies changes in image data stored in a frame buffer, generates an update information message to identify the location of the changed image data and to provide the changed image data. A display sink receives the update information message and merges the changed image data with image data stored in a local frame buffer.
Abstract:
Techniques for polling an input/output (I/O) device are described herein. The techniques include polling a device for data from the I/O device, and receiving the data from the I/O device at the host device as a result of the polling. The techniques include determining whether the data received is the same as data received at a previous polling of the I/O device. Upon determining the data received is the same, the techniques include decreasing the polling rate if the data is the same, and if it is not the same. Upon determining the data is not the same, the techniques include increasing the polling rate if the data is not the same.
Abstract:
Techniques for polling an input/output (I/O) device are described herein. The techniques include polling a device for data from the I/O device, and receiving the data from the I/O device at the host device as a result of the polling. The techniques include determining whether the data received is the same as data received at a previous polling of the I/O device. Upon determining the data received is the same, the techniques include decreasing the polling rate if the data is the same, and if it is not the same. Upon determining the data is not the same, the techniques include increasing the polling rate if the data is not the same.
Abstract:
Techniques for polling an input/output (I/O) device are described herein. The techniques include polling a device for data from the I/O device, and receiving the data from the I/O device at the host device as a result of the polling. The techniques include determining whether the data received is the same as data received at a previous polling of the I/O device. Upon determining the data received is the same, the techniques include decreasing the polling rate if the data is the same, and if it is not the same. Upon determining the data is not the same, the techniques include increasing the polling rate if the data is not the same.