Abstract:
Technologies for local power gate (LPG) interfaces for power-aware operations are described. A system on chip (SoC) includes a first functional unit, a second functional unit, and local power gate (LPG) hardware coupled to the first functional unit and the second functional unit. The LPG hardware is to power gate the first functional unit according to local power states of the LPG hardware. The second functional unit decodes a first instruction to perform a first power-aware operation of a specified length, including computing an execution code path for execution. The second functional unit monitors a current local power state of the LPG hardware, selects a code path based on the current local power state, the specified length, and a specified threshold, and issues a hint to the LPG hardware to power up the first functional unit and continues execution of the first power-aware operation without waiting for the first functional unit to be powered up.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
Technologies for local power gate (LPG) interfaces for power-aware operations are described. A system on chip (SoC) includes a first functional unit, a second functional unit, and local power gate (LPG) hardware coupled to the first functional unit and the second functional unit. The LPG hardware is to power gate the first functional unit according to local power states of the LPG hardware. The second functional unit decodes a first instruction to perform a first power-aware operation of a specified length, including computing an execution code path for execution. The second functional unit monitors a current local power state of the LPG hardware, selects a code path based on the current local power state, the specified length, and a specified threshold, and issues a hint to the LPG hardware to power up the first functional unit and continues execution of the first power-aware operation without waiting for the first functional unit to be powered up.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.