Abstract:
A wearable device for binaural audio is described. The wearable device includes a feedback mechanism, a microphone, an always on binaural recorder (AOBR), and a processor. The AOBR is to capture ambient noise via the microphone and interpret the ambient noise. An alert is issued by the processor to the feedback mechanism based on a notification detected via the microphone in the ambient noise.
Abstract:
This application discusses among other things apparatus and methods for optimizing speech recognition at a far-end device. In an example, a method can include establishing a link with a far-end communication device using a near-end communication device, identifying a context of the far end communication device, and selecting one audio processing mode of a plurality of audio processing modes at the near-end communication device, the one audio processing mode associated with the identified context of the far-end device, and configured to reduce reception error by the far-end communication device of audio transmitted from the near-end communication device.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques for detecting, by one or more sensor components, at least one sensor input, and executing, by logic, at least one instruction to cause an event on a wearable wireless device, the event comprising at least one of a change in a physical parameter on the wearable wireless device and a wireless communication with a computing device via a transceiver.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques for detecting, by one or more sensor components, at least one sensor input, and executing, by logic, at least one instruction to cause an event on a wearable wireless device, the event comprising at least one of a change in a physical parameter on the wearable wireless device and a wireless communication with a computing device via a transceiver.
Abstract:
Various systems and methods for air gesture-based composition and instruction systems are described herein. A composition system for composing gesture-based performances may receive an indication of an air gesture performed by a user; reference a mapping of air gestures to air gesture notations to identify an air gesture notation corresponding to the air gesture; and store an indication of the air gesture notation in a memory of the computerized composition system. Another system used for instruction may present a plurality of air gesture notations in a musical arrangement; receive an indication of an air gesture performed by a user; reference a mapping of air gestures to air gesture notations to identify an air gesture notation corresponding to the air gesture; and guide the user through the musical arrangement by sequentially highlighting the air gesture notations in the musical arrangement based on the mapping of air gestures to air gesture notations.
Abstract:
Methods, systems and articles of manufacture for a wearable electronic device having an audio source identifier are disclosed. Example audio source identifiers disclosed herein include first and second audio sensors disposed at first and second locations, respectively, on a wearable electronic device. Such audio source identifiers also include a phase shift determiner to determine a phase shift between a first sample of first audio captured at the first audio sensor and a second sample of the first audio captured at the second audio sensor. The first audio includes first speech generated by a first speaker wearing the wearable electronic device. Example audio source identifiers further include a speaker identifier to determine, based on the phase shift determined by the phase shift determiner, whether second audio includes speech generated by a second speaker wearing the wearable electronic device.
Abstract:
A mechanism is described for facilitating wind detection and wind noise reduction in computing environments according to one embodiment. An apparatus of embodiments, as described herein, includes wind detection logic to detect wind associated with the apparatus including a wearable computing device, wherein the wind is detected based on samples from multiple microphones and extraction and use of multiple features including spectral sub-band centroid (SSC) features and coherence features; and decision and execution logic to reduce wind noise associated with the detected wind.
Abstract:
A wearable sensor system is disclosed that provides a measurable magnetic field that changes horizontally within the range of motion of human limbs. The wearable sensor system includes a magnetic sensing device, and one or more magnet devices that provide the measurable magnetic field with a strength exceeding the Earth's magnetic field. To this end, the magnetic sensing system provides a “personal” magnetic field about a user, with that magnetic field traveling with the user and overpowering adjacent interfering fields. The wearable sensor system may include a sensor arrangement that measures a strength of the personal magnetic field and field direction to perform horizontal localization, and may send a representation of a same to a remote computing device to cause an action to occur. Some such actions include output of pre-recorded or synthesized musical notes, for example.
Abstract:
Embodiments include a wearable device, such as a head-worn device. The wearable device includes a first microphone to receive a first sound signal from a wearer of the wearable device; a second microphone to receive a second sound signal from the wearer of the wearable device; and a processor to process the first sound signals and the second sound signals to determine that the first and second sound signals originate from the wearer of the wearable device.
Abstract:
Particular embodiments described herein provide for an electronic device that includes a plurality of audio acquisition areas. Each of the plurality of audio acquisition areas can include a microphone element to detect audio data, an audio opening that allows the audio data to travel to the microphone element, and a windscreen that covers at least the audio opening. An audio module can be configured to receive the audio data from each of the plurality of audio acquisition areas and enhance the audio data.