Abstract:
A method and apparatus are provided for removing solid and/or liquid residues from electronic components such as semiconductor wafers utilizing liquid or supercritical carbon dioxide which is solidified on the surface of the wafer and then vaporized and removed from the system. In a preferred embodiment the solidification and vaporizing steps are repeated (cycled) before removal of the CO2 from the vessel. The residues are carried away with the vaporized carbon dioxide.
Abstract:
An apparatus and method are provided for developing photoresist patterns on electronic component substrates such as semiconductor wafers. The method and apparatus use a specially defined developer composition in sequence with a specially defined rinse composition to develop an exposed photoresist pattern and then to rinse the developed pattern. Both the developer composition and rinse composition contain an anionic surfactant and, when the solutions are used in sequence, have been found to provide a resist pattern which avoids pattern collapse even when small features such as line widths less than 150 nm with aspect ratios of greater than about 3 are formed. It is preferred to use a puddle developing and puddle rinsing process to develop and rinse the exposed wafer. Preferred anionic surfactants are ammonium perfluoroalkyl sulfonate and ammonium perfluoroalkyl carboxylate.
Abstract:
A negative resist composition, comprising: (a) silicon-containing polymer with pendant fused moieties selected from the group consisting of fused aliphatic moieties, homocyclic fused aromatic moieties, and heterocyclic fused aromatic and sites for reaction with a crosslinking agent, (b) an acid-sensitive crosslinking agent, and (c) a radiation-sensitive acid generator is provided. The resist composition is used to form a patterned material layer in a substrate.
Abstract:
A method and apparatus are provided for in situ monitoring and analyzing of process parameters for semiconductor fabrication processes including cleaning semiconductor wafers utilizing a supercritical fluid or a high pressure liquid such as CO2. The method and apparatus utilize a spectrometer having a reflective mirror proximate the vessel holding the high pressure fluid. NIR radiation transmitted into the vessel through a window and out of the vessel through an opposed window is reflected and detected and measured and the composition of the fluid in the pressure vessel is determined allowing the user to control process parameters based on the measured composition.
Abstract:
Methods are provided for making microfilters by subtractive techniques which remove a component or part of a filter material to form pores in the filter material and additive techniques which deposit a filter material onto a porous underlying substrate. All the methods employ a supercritical fluid or mixture which have very high solvency properties and low viscosity and CO2 is the preferred supercritical fluid.
Abstract:
A chemically amplified (CA) photoresist system wherein a terpolymer containing ketal/phenolic/silicon based sidechains is provided. Among other things, the terpolymers provide for improved bake technologies. In another aspect a process for lithographic treatment of a substrate by means of ketal/phenolic/silicon based compositions and corresponding processes for the production of an object, particularly an electronic component are provided.
Abstract:
A process of drying a cast film polymeric disposed upon a workpiece. In this process a cast polymeric film, which includes a volatile organic compound therein, disposed on a workpiece, is contacted with an extraction agent which may be liquid carbon dioxide or supercritical carbon dioxide.
Abstract:
Antireflective compositions characterized by the presence of an SiO-containing polymer having pendant chromophore moieties are useful antireflective coating/hardmask compositions in lithographic processes. These compositions provide outstanding optical, mechanical and etch selectivity properties while being applicable using spin-on application techniques. The compositions are especially useful in lithographic processes used to configure underlying material layers on a substrate, especially metal or semiconductor layers.