Abstract:
In an aspect, an update unit can evaluate condition(s) in an update request and update one or more memory locations based on the condition evaluation. The update unit can operate atomically to determine whether to effect the update and to make the update. Updates can include one or more of incrementing and swapping values. An update request may specify one of a pre-determined set of update types. Some update types may be conditional and others unconditional. The update unit can be coupled to receive update requests from a plurality of computation units. The computation units may not have privileges to directly generate write requests to be effected on at least some of the locations in memory. The computation units can be fixed function circuitry operating on inputs received from programmable computation elements. The update unit may include a buffer to hold received update requests.
Abstract:
In some aspects, systems and methods provide for forming groupings of a plurality of independently-specified computation workloads, such as graphics processing workloads, and in a specific example, ray tracing workloads. The workloads include a scheduling key, which is one basis on which the groupings can be formed. Workloads grouped together can all execute from the same source of instructions, on one or more different private data elements. Such workloads can recursively instantiate other workloads that reference the same private data elements. In some examples, the scheduling key can be used to identify a data element to be used by all the workloads of a grouping. Memory conflicts to private data elements are handled through scheduling of non-conflicted workloads or specific instructions and/or deferring conflicted workloads instead of locking memory locations.
Abstract:
In an aspect, an update unit can evaluate condition(s) in an update request and update one or more memory locations based on the condition evaluation. The update unit can operate atomically to determine whether to effect the update and to make the update. Updates can include one or more of incrementing and swapping values. An update request may specify one of a pre-determined set of update types. Some update types may be conditional and others unconditional. The update unit can be coupled to receive update requests from a plurality of computation units. The computation units may not have privileges to directly generate write requests to be effected on at least some of the locations in memory. The computation units can be fixed function circuitry operating on inputs received from programmable computation elements. The update unit may include a buffer to hold received update requests.
Abstract:
In an aspect, an update unit can evaluate condition(s) in an update request and update one or more memory locations based on the condition evaluation. The update unit can operate atomically to determine whether to effect the update and to make the update. Updates can include one or more of incrementing and swapping values. An update request may specify one of a pre-determined set of update types. Some update types may be conditional and others unconditional. The update unit can be coupled to receive update requests from a plurality of computation units. The computation units may not have privileges to directly generate write requests to be effected on at least some of the locations in memory. The computation units can be fixed function circuitry operating on inputs received from programmable computation elements. The update unit may include a buffer to hold received update requests.
Abstract:
In some aspects, systems and methods provide for forming groupings of a plurality of independently-specified computation workloads, such as graphics processing workloads, and in a specific example, ray tracing workloads. The workloads include a scheduling key, which is one basis on which the groupings can be formed. Workloads grouped together can all execute from the same source of instructions, on one or more different private data elements. Such workloads can recursively instantiate other workloads that reference the same private data elements. In some examples, the scheduling key can be used to identify a data element to be used by all the workloads of a grouping. Memory conflicts to private data elements are handled through scheduling of non-conflicted workloads or specific instructions and/or deferring conflicted workloads instead of locking memory locations.
Abstract:
In an aspect, an update unit can evaluate condition(s) in an update request and update one or more memory locations based on the condition evaluation. The update unit can operate atomically to determine whether to effect the update and to make the update. Updates can include one or more of incrementing and swapping values. An update request may specify one of a pre-determined set of update types. Some update types may be conditional and others unconditional. The update unit can be coupled to receive update requests from a plurality of computation units. The computation units may not have privileges to directly generate write requests to be effected on at least some of the locations in memory. The computation units can be fixed function circuitry operating on inputs received from programmable computation elements. The update unit may include a buffer to hold received update requests.
Abstract:
In some aspects, systems and methods provide for forming groupings of a plurality of independently-specified computation workloads, such as graphics processing workloads, and in a specific example, ray tracing workloads. The workloads include a scheduling key, which is one basis on which the groupings can be formed. Workloads grouped together can all execute from the same source of instructions, on one or more different private data elements. Such workloads can recursively instantiate other workloads that reference the same private data elements. In some examples, the scheduling key can be used to identify a data element to be used by all the workloads of a grouping. Memory conflicts to private data elements are handled through scheduling of non-conflicted workloads or specific instructions and/or deferring conflicted workloads instead of locking memory locations.
Abstract:
In some aspects, systems and methods provide for forming groupings of a plurality of independently-specified computation workloads, such as graphics processing workloads, and in a specific example, ray tracing workloads. The workloads include a scheduling key, which is one basis on which the groupings can be formed. Workloads grouped together can all execute from the same source of instructions, on one or more different private data elements. Such workloads can recursively instantiate other workloads that reference the same private data elements. In some examples, the scheduling key can be used to identify a data element to be used by all the workloads of a grouping. Memory conflicts to private data elements are handled through scheduling of non-conflicted workloads or specific instructions and/or deferring conflicted workloads instead of locking memory locations.
Abstract:
In an aspect, an update unit can evaluate condition(s) in an update request and update one or more memory locations based on the condition evaluation. The update unit can operate atomically to determine whether to effect the update and to make the update. Updates can include one or more of incrementing and swapping values. An update request may specify one of a pre-determined set of update types. Some update types may be conditional and others unconditional. The update unit can be coupled to receive update requests from a plurality of computation units. The computation units may not have privileges to directly generate write requests to be effected on at least some of the locations in memory. The computation units can be fixed function circuitry operating on inputs received from programmable computation elements. The update unit may include a buffer to hold received update requests.
Abstract:
In some aspects, systems and methods provide for forming groupings of a plurality of independently-specified computation workloads, such as graphics processing workloads, and in a specific example, ray tracing workloads. The workloads include a scheduling key, which is one basis on which the groupings can be formed. Workloads grouped together can all execute from the same source of instructions, on one or more different private data elements. Such workloads can recursively instantiate other workloads that reference the same private data elements. In some examples, the scheduling key can be used to identify a data element to be used by all the workloads of a grouping. Memory conflicts to private data elements are handled through scheduling of non-conflicted workloads or specific instructions and/or deferring conflicted workloads instead of locking memory locations.