Abstract:
An oscillator circuit includes an adjustable frequency oscillator configured to free-run at a first frequency below a desired second target frequency. This adjustable frequency oscillator is configured to modulate a frequency of its periodic output signal upwards from the first frequency to the second frequency in response to a feedback bias current. A divider is also provided, which is configured to convert the periodic output signal to a reduced-frequency control signal. This reduced-frequency control signal is provided to a frequency-to-current (F2C) converter, which is configured to drive the adjustable frequency oscillator with the feedback bias current (e.g., pull-down current) in response to the reduced-frequency control signal.
Abstract:
Charging systems and related methods are disclosed for switching voltage regulators. A charging controller may be configured to generate a control signal indicating a first level of an output current generated by a switching voltage regulator for charging an energy storage device, determine that an output voltage exceeded a predetermined threshold, and generate the control signal indicating a new level of the output current that is reduced from the first level. A method of controlling charging of an energy storage device may comprise monitoring an output voltage charging an energy storage device, comparing a reference signal and a current sense signal to generate a PWM control signal that determines an output current for a switching voltage regulator generating the output voltage, and decrementing the reference signal in response to the output voltage exceeding a predetermined level for a maximum charging voltage for the energy storage device.
Abstract:
A charging system includes a temperature sensor to generate a temperature signal responsive to a temperature of an energy storage device. A circuit temperature sensor generates a circuit temperature signal responsive to a temperature of a semiconductor device. A charge adjuster generates a desired current signal responsive to the temperature signal and the circuit temperature signal. A comparator compares a charge-current level signal to the desired current signal to generate a charge adjustment signal. A charge controller on the semiconductor device generates and adjusts a current of a charging signal for charging the energy storage device responsive to the charge adjustment signal. The charge adjuster may generate a reduction signal when the temperature signal is above a throttle threshold, reduce a digital desired current signal responsive to the reduction signal, and convert the digital desired current signal to the desired current signal as an analog signal.
Abstract:
A charging system includes a temperature sensor to generate a temperature signal responsive to a temperature of an energy storage device. A circuit temperature sensor generates a circuit temperature signal responsive to a temperature of a semiconductor device. A charge adjuster generates a desired current signal responsive to the temperature signal and the circuit temperature signal. A comparator compares a charge-current level signal to the desired current signal to generate a charge adjustment signal. A charge controller on the semiconductor device generates and adjusts a current of a charging signal for charging the energy storage device responsive to the charge adjustment signal. The charge adjuster may generate a reduction signal when the temperature signal is above a throttle threshold, reduce a digital desired current signal responsive to the reduction signal, and convert the digital desired current signal to the desired current signal as an analog signal.
Abstract:
Charging systems and related methods are disclosed for switching voltage regulators. A charging controller may be configured to generate a control signal indicating a first level of an output current generated by a switching voltage regulator for charging an energy storage device, determine that an output voltage exceeded a predetermined threshold, and generate the control signal indicating a new level of the output current that is reduced from the first level. A method of controlling charging of an energy storage device may comprise monitoring an output voltage charging an energy storage device, comparing a reference signal and a current sense signal to generate a PWM control signal that determines an output current for a switching voltage regulator generating the output voltage, and decrementing the reference signal in response to the output voltage exceeding a predetermined level for a maximum charging voltage for the energy storage device.