Abstract:
Embodiments herein may relate to an interconnect that includes a transceiver, wherein the transceiver is configured to generate a single side band (SSB) signal for communication over a waveguide and a waveguide interconnect to communicate the SSB signal over the waveguide. In an example, an SSB operator is configured to generate the SSB signal and the SSB signal can be generated by use of a finite-impulse response filter. Other embodiments may be described and/or claimed.
Abstract:
In one embodiment, the present invention includes a host controller with transmit logic to prepare data into a packet for communication along an interconnect and to transmit the packet. This packet may include a preamble portion having a first predetermined value, a content portion including the data and having a plurality of symbols each including a start bit separate from the data, an error detection portion including an inverted version of the content portion, and a postamble portion having a second predetermined value. Other embodiments are described and claimed.
Abstract:
An interconnect interface is provided to enable communication with an off-package device over a link including a plurality of lanes. Logic of the interconnect interface includes receiver logic to receive a valid signal from the off-package device on a dedicated valid lane of the link indicating that data is to arrive on a plurality of dedicated data lanes in the plurality of lanes, receive the data on the data lanes from the off-package device sampled based on arrival of the valid signal, and receive a stream signal from the off-package device on a dedicated stream lane in the plurality of lanes. The stream signal corresponds to the data and indicates a particular data type of the data. The particular data type can be one of a plurality of different data types capable of being received on the plurality of data lanes of the link.
Abstract:
An interconnect interface is provided to enable communication with an off-package device over a link including a plurality of lanes. Logic of the interconnect interface includes receiver logic to receive a valid signal from the off-package device on a dedicated valid lane of the link indicating that data is to arrive on a plurality of dedicated data lanes in the plurality of lanes, receive the data on the data lanes from the off-package device sampled based on arrival of the valid signal, and receive a stream signal from the off-package device on a dedicated stream lane in the plurality of lanes. The stream signal corresponds to the data and indicates a particular data type of the data. The particular data type can be one of a plurality of different data types capable of being received on the plurality of data lanes of the link.
Abstract:
A vertically ground isolated package device can include (1) ground shielding attachment structures and shadow voiding for data signal contacts; (2) vertical ground shielding structures and shield fencing of vertical data signal interconnects; and (3) ground shielding for an electro-optical module connector of the package device. These reduce cross talk between data signal contacts, attachment structures and vertical “signal” interconnects of the package device. The ground shielding attachment structures may include patterns of solder bumps and/or surface contacts. The shadow voiding may be surrounding voids in ground planes that are larger than the data signal solder bumps. The vertical ground shielding structures may include patterns of ground shield interconnects between the vertical data signal interconnects: The shield fencing may include patterns of ground plated through holes (PTH) and micro-vias (uVia). The ground shielding for the electro-optical module may include patterns of ground isolation shielding attachments and contacts.
Abstract:
Embodiments herein may relate to an interconnect that includes a transceiver, wherein the transceiver is configured to generate a single side band (SSB) signal for communication over a waveguide and a waveguide interconnect to communicate the SSB signal over the waveguide. In an example, an SSB operator is configured to generate the SSB signal and the SSB signal can be generated by use of a finite-impulse response filter. Other embodiments may be described and/or claimed.
Abstract:
An interconnect interface is provided to enable communication with an off-package device over a link including a plurality of lanes. Logic of the interconnect interface includes receiver logic to receive a valid signal from the off-package device on a dedicated valid lane of the link indicating that data is to arrive on a plurality of dedicated data lanes in the plurality of lanes, receive the data on the data lanes from the off-package device sampled based on arrival of the valid signal, and receive a stream signal from the off-package device on a dedicated stream lane in the plurality of lanes. The stream signal corresponds to the data and indicates a particular data type of the data. The particular data type can be one of a plurality of different data types capable of being received on the plurality of data lanes of the link.
Abstract:
An interconnect interface is provided to enable communication with an off-package device over a link including a plurality of lanes. Logic of the interconnect interface includes receiver logic to receive a valid signal from the off-package device on a dedicated valid lane of the link indicating that data is to arrive on a plurality of dedicated data lanes in the plurality of lanes, receive the data on the data lanes from the off-package device sampled based on arrival of the valid signal, and receive a stream signal from the off-package device on a dedicated stream lane in the plurality of lanes. The stream signal corresponds to the data and indicates a particular data type of the data. The particular data type can be one of a plurality of different data types capable of being received on the plurality of data lanes of the link.
Abstract:
In one embodiment, the present invention includes a host controller with transmit logic to prepare data into a packet for communication along an interconnect and to transmit the packet. This packet may include a preamble portion having a first predetermined value, a content portion including the data and having a plurality of symbols each including a start bit separate from the data, an error detection portion including an inverted version of the content portion, and a postamble portion having a second predetermined value. Other embodiments are described and claimed.
Abstract:
An interconnect interface is provided to enable communication with an off-package device over a link including a plurality of lanes. Logic of the interconnect interface includes receiver logic to receive a valid signal from the off-package device on a dedicated valid lane of the link indicating that data is to arrive on a plurality of dedicated data lanes in the plurality of lanes, receive the data on the data lanes from the off-package device sampled based on arrival of the valid signal, and receive a stream signal from the off-package device on a dedicated stream lane in the plurality of lanes. The stream signal corresponds to the data and indicates a particular data type of the data. The particular data type can be one of a plurality of different data types capable of being received on the plurality of data lanes of the link.