Abstract:
In an embodiment, at least one computer readable medium has instructions stored thereon for causing a system to cryptographically sign, at a secure platform services enclave (PSE) of a computing system and using a secure attestation key (SGX AK), a public portion of a trusted platform module attestation key (TPM AK) associated with a trusted computing base of a physical platform, to form a certified TPM AK public portion. Also included are instructions to store the certified TPM AK public portion in the PSE, and instructions to, responsive to an attestation request received from a requester at a virtual trusted platform module (vTPM) associated with a virtual machine (VM) that has migrated onto the physical platform, provide to the requester the certified TPM AK public portion stored in the PSE. Other embodiments are described and claimed.
Abstract:
Embodiments of techniques and systems associated with roots-of-trust (RTMs) for measurement of virtual machines (VMs) are disclosed. In some embodiments, a computing platform may provide a virtual machine RTM (vRTM) in a first secure enclave of the computing platform. The computing platform may be configured to perform an integrity measurement of the first secure enclave. The computing platform may provide a virtual machine trusted platform module (vTPM), for a guest VM, outside the first secure enclave of the computing platform. The computing platform may initiate a chain of integrity measurements between the vRTM and a resource of the guest VM. Other embodiments may be described and/or claimed.
Abstract:
In an embodiment, at least one computer readable medium has instructions stored thereon for causing a system to cryptographically sign, at a secure platform services enclave (PSE) of a computing system and using a secure attestation key (SGX AK), a public portion of a trusted platform module attestation key (TPM AK) associated with a trusted computing base of a physical platform, to form a certified TPM AK public portion. Also included are instructions to store the certified TPM AK public portion in the PSE, and instructions to, responsive to an attestation request received from a requester at a virtual trusted platform module (vTPM) associated with a virtual machine (VM) that has migrated onto the physical platform, provide to the requester the certified TPM AK public portion stored in the PSE. Other embodiments are described and claimed.
Abstract:
Embodiments of techniques and systems associated with roots-of-trust (RTMs) for measurement of virtual machines (VMs) are disclosed. In some embodiments, a computing platform may provide a virtual machine RTM (vRTM) in a first secure enclave of the computing platform. The computing platform may be configured to perform an integrity measurement of the first secure enclave. The computing platform may provide a virtual machine trusted platform module (vTPM), for a guest VM, outside the first secure enclave of the computing platform. The computing platform may initiate a chain of integrity measurements between the vRTM and a resource of the guest VM. Other embodiments may be described and/or claimed.
Abstract:
There is disclosed in an example, a pourable smart matter having a plurality of compute nodes, the compute nodes having: a mechanical structure having a plurality of faces, the faces having abutting face detectors; a network interface; and one or more logic elements comprising a positional engine to: identify a neighbor compute node abutting at least one of the faces; and build an individual positional profile based at least in part on the identifying. The pourable smart matter may be used, for example, to determine the geometry or volume of a container.
Abstract:
Technologies for sensor privacy on a computing device include receiving, by a sensor controller of the computing device, sensor data from a sensor of the computing device; determining a sensor mode for the sensor; and sending privacy data in place of the sensor data in response to a determination that the sensor mode for the sensor is set to a private mode. The technologies may also include receiving, by a security engine of the computing device, a sensor mode change command from a user of the computing device via a trusted input/output path of the computing device; and sending a mode command to the sensor controller to set the sensor mode of the sensor based on the sensor mode change command, wherein the sending the mode command comprises sending the mode command over a private bus established between the security engine and the sensor controller. Other embodiments are described herein.
Abstract:
Technologies for sensor privacy on a computing device include receiving, by a sensor controller of the computing device, sensor data from a sensor of the computing device; determining a sensor mode for the sensor; and sending privacy data in place of the sensor data in response to a determination that the sensor mode for the sensor is set to a private mode. The technologies may also include receiving, by a security engine of the computing device, a sensor mode change command from a user of the computing device via a trusted input/output path of the computing device; and sending a mode command to the sensor controller to set the sensor mode of the sensor based on the sensor mode change command, wherein the sending the mode command comprises sending the mode command over a private bus established between the security engine and the sensor controller. Other embodiments are described herein.
Abstract:
There is disclosed in an example, a pourable smart matter having a plurality of compute nodes, the compute nodes having: a mechanical structure having a plurality of faces, the faces having abutting face detectors; a network interface; and one or more logic elements comprising a positional engine to: identify a neighbor compute node abutting at least one of the faces; and build an individual positional profile based at least in part on the identifying. The pourable smart matter may be used, for example, to determine the geometry or volume of a container.
Abstract:
Embodiments of techniques and systems associated with roots-of-trust (RTMs) for measurement of virtual machines (VMs) are disclosed. In some embodiments, a computing platform may provide a virtual machine RTM (vRTM) in a first secure enclave of the computing platform. The computing platform may be configured to perform an integrity measurement of the first secure enclave. The computing platform may provide a virtual machine trusted platform module (vTPM), for a guest VM, outside the first secure enclave of the computing platform. The computing platform may initiate a chain of integrity measurements between the vRTM and a resource of the guest VM. Other embodiments may be described and/or claimed.