Abstract:
In one embodiment, a multi-core processor includes multiple cores and an uncore, where the uncore includes various logic units including a cache memory, a router, and a power control unit (PCU). The PCU can clock gate at least one of the logic units and the cache memory when the multi-core processor is in a low power state to thus reduce dynamic power consumption.
Abstract:
In an embodiment, a processor includes at least one core and power management logic. The power management logic is to receive temperature data from a plurality of dies within a package that includes the processor, and determine a smallest temperature control margin of a plurality of temperature control margins. Each temperature control margin is to be determined based on a respective thermal control temperature associated with the die and also based on respective temperature data associated with the die. The power management logic is also to generate a thermal report that is to include the smallest temperature control margin, and to store the thermal report. Other embodiments are described and claimed.
Abstract:
Described is a processor comprising: a plurality of transistors operable to provide dynamically adjustable transistor size, the plurality of transistors coupled at one end to a first power supply and coupled at another end to a second power supply; a circuit coupled to the second power supply, the second power supply to provide power to the circuit; and a power control unit (PCU) to monitor the level of the first power supply, and to dynamically adjust the transistor size of the plurality of transistors so that the second power supply is adjusted to keep the circuit operational.
Abstract:
A semiconductor chip comprising memory controller circuitry having interface circuitry to couple to a memory channel. The memory controller includes first logic circuitry to implement a first memory channel protocol on the memory channel. The first memory channel protocol is specific to a first volatile system memory technology. The interface also includes second logic circuitry to implement a second memory channel protocol on the memory channel. The second memory channel protocol is specific to a second non volatile system memory technology. The second memory channel protocol is a transactional protocol.
Abstract:
A semiconductor chip comprising memory controller circuitry having interface circuitry to couple to a memory channel. The memory controller includes first logic circuitry to implement a first memory channel protocol on the memory channel. The first memory channel protocol is specific to a first volatile system memory technology. The interface also includes second logic circuitry to implement a second memory channel protocol on the memory channel. The second memory channel protocol is specific to a second non volatile system memory technology. The second memory channel protocol is a transactional protocol
Abstract:
In an embodiment, a processor includes a first chip of a multi-chip package (MCP). The first chip includes at least one core and first chip temperature control (TC) logic to assert a first power adjustment signal at a second chip of the MCP responsive to an indication that a first chip temperature of the first chip exceeds a first threshold. The processor also includes a conduit that includes a bi-directional pin to couple the first chip to the second chip within the MCP. The conduit is to transport the first power adjustment signal from the first chip to the second chip and the first power adjustment signal is to cause an adjustment of a second chip power consumption of the second chip. Other embodiments are described and claimed.
Abstract:
Described is a processor comprising: a plurality of transistors operable to provide dynamically adjustable transistor size, the plurality of transistors coupled at one end to a first power supply and coupled at another end to a second power supply; a circuit coupled to the second power supply, the second power supply to provide power to the circuit; and a power control unit (PCU) to monitor the level of the first power supply, and to dynamically adjust the transistor size of the plurality of transistors so that the second power supply is adjusted to keep the circuit operational.
Abstract:
In one embodiment, a processor includes at least one core to execute instructions, one or more thermal sensors associated with the at least one core, and a power controller coupled to the at least one core. The power controller has a control logic to receive temperature information regarding the processor and dynamically determine a maximum allowable average power limit based at least in part on the temperature information. The control logic may further maintain a static maximum base operating frequency of the processor regardless of a value of the temperature information. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes at least one core and power management logic. The power management logic is to receive temperature data from a plurality of dies within a package that includes the processor, and determine a smallest temperature control margin of a plurality of temperature control margins. Each temperature control margin is to be determined based on a respective thermal control temperature associated with the die and also based on respective temperature data associated with the die. The power management logic is also to generate a thermal report that is to include the smallest temperature control margin, and to store the thermal report. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a first chip of a multi-chip package (MCP). The first chip includes at least one core and first chip temperature control (TC) logic to assert a first power adjustment signal at a second chip of the MCP responsive to an indication that a first chip temperature of the first chip exceeds a first threshold. The processor also includes a conduit that includes a bi-directional pin to couple the first chip to the second chip within the MCP. The conduit is to transport the first power adjustment signal from the first chip to the second chip and the first power adjustment signal is to cause an adjustment of a second chip power consumption of the second chip. Other embodiments are described and claimed.