Abstract:
A method of growing a plurality of free-standing structures comprises providing a plurality of free-standing structures, each free-standing structure having a first end coupled to a substrate, and a terminal end; providing at least one laser beam, the laser beam having a beam waste at a point proximate to the terminal end of the free-standing structure; and moving one of the plurality of freestanding structures or the beam waste to provide a growth zone proximate to the terminal end of each of the free-standing structures such that the free-standing structures grow into the growth zones by addition of decomposing precursor components. The growth rates of each of the free-standing structures are substantially the same.
Abstract:
A method of manufacturing an article comprises providing a first sheet, wetting the first sheet with a liquid precursor to provide a first wet sheet, and irradiating the first wet sheet in a pattern corresponding to a first cross section of the article such that the liquid precursor is at least partially converted to a solid in the first cross section. A second sheet is disposed adjacent to the first sheet. The method further comprises wetting the second sheet with the liquid precursor to provide a second wet sheet, and irradiating the second wet sheet in a pattern corresponding to a second cross section of the article such that the liquid precursor is at least partially converted to a solid in the second cross section. In particular the liquid precursor may be converted to a metal, ceramic, semiconductor, semimetal, or a combination of these materials.
Abstract:
Method and apparatus for the selective heat-induced deposition of solid material from gas-phase or super-critical fluids to produce three-dimensional parts by pyrolysis of the fluids. The apparatus involves computer/feedback control of the evolving shape by direct monitoring of the volumetric deposition rate or growth profile, and modifying light beam focal properties, the position and orientation of the deposit relative to the beam foci, and/or the pressure and flow of reactants to the growth zone. The precursor gases may be pressurized and heated to the critical point or beyond, becoming super-critical fluids, without condensation. Growth occurs by diffusion of reactants to the growth zone through a boundary layer over the deposit. One method of growth includes directing a large-area impinging jet of precursor fluid(s) onto a deposit interface, while limiting the reaction zone to a smaller area determined solely by size of the heated zone (through use of a radiant beam, e.g.). Another method comprises directing a small-area impinging jet of precursor fluid onto a deposit interface, where the heated region is larger than the jet size. Inclusion of a powder admixture and a precursor as a reactant, flowed jointly at high-pressures, create a two-phase flow, facilitated by increased viscosity of precursor fluid at high pressures. The powder may also be flowed separately, and adds volume and properties to the deposit material. Thus, the invention allows continuous growth of single- or multi-material, three-dimensional microstructures with internal features and characteristic dimensions from microns to decimeters.
Abstract:
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
Abstract:
A method for calculating a coagulation characteristic of a sample of blood, a blood fraction, or a control comprises generating an output signal indicative of coagulation of the sample, sampling the output signal at a sampling rate for a predetermined time to provide a plurality of sampled signal values, storing the sampled signal values, rectifying the stored sampled signal values to provide a plurality of envelope values, and storing the envelope values. The stored envelope values are examined in reverse time order to determine a slope of the envelope at each of the stored envelope values. All relative maxima in the stored envelope values are identified. A range of stored envelope values corresponding to each relative maximum is determined. The identified relative maxima are compared to locate an absolute maximum in the stored envelope values. The coagulation characteristic is then calculated from the stored envelope values within the predetermined range of envelope values corresponding to the absolute maximum.
Abstract:
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
Abstract:
The staling of sweet baked goods comprising starch, water and sweetener is reduced from conventional levels. This may be accomplished by incorporating a preservative agent sugar having high unit anti-staling activity into the sweetener and/or by increasing the total amount of sugar in the sweetener.
Abstract:
A method of manufacturing an article comprises providing a first sheet, wetting the first sheet with a liquid precursor to provide a first wet sheet, and irradiating the first wet sheet in a pattern corresponding to a first cross section of the article such that the liquid precursor is at least partially converted to a solid in the first cross section. A second sheet is disposed adjacent to the first sheet. The method further comprises wetting the second sheet with the liquid precursor to provide a second wet sheet, and irradiating the second wet sheet in a pattern corresponding to a second cross section of the article such that the liquid precursor is at least partially converted to a solid in the second cross section. In particular the liquid precursor may be converted to a metal, ceramic, semiconductor, semimetal, or a combination of these materials.
Abstract:
Ultraconducting devices and methods of making thereof, said ultraconducting devices comprising continuous, aligned carbon nanotubes and a metallic matrix which substantially surrounds the carbon nanotubes.