Abstract:
Provided are a macroporous titanium compound monolith and a production method thereof, the macroporous titanium compound monolith having a framework that is composed of a titanium compound other than titanium dioxide, having controlled macropores, and having electron conductivity, the titanium compound being oxygen-deficient titanium oxide, titanium oxynitride, or titanium nitride. Provided is a method including: placing a macroporous titanium dioxide monolith and a metal having titanium-reducing ability in a container, the macroporous titanium dioxide monolith having a co-continuous structure of a macropore and a framework that is composed of titanium dioxide; creating a vacuum atmosphere or an inert gas atmosphere within the container; and heating the monolith and the metal to cause gas-phase reduction that removes oxygen atom from the titanium dioxide composing the monolith by the metal acting as an oxygen getter, thereby obtaining a macroporous oxygen-deficient titanium oxide monolith having a co-continuous structure of the macropore and a framework that is composed of oxygen-deficient titanium oxide, the macroporous oxygen-deficient titanium oxide monolith having electron conductivity derived from the oxygen-deficient titanium oxide.
Abstract:
Provided are a macroporous titanium compound monolith and a production method thereof, the macroporous titanium compound monolith having a framework that is composed of a titanium compound other than titanium dioxide, having controlled macropores, and having electron conductivity, the titanium compound being oxygen-deficient titanium oxide, titanium oxynitride, or titanium nitride. Provided is a method including: placing a macroporous titanium dioxide monolith and a metal having titanium-reducing ability in a container, the macroporous titanium dioxide monolith having a co-continuous structure of a macropore and a framework that is composed of titanium dioxide; creating a vacuum atmosphere or an inert gas atmosphere within the container; and heating the monolith and the metal to cause gas-phase reduction that removes oxygen atom from the titanium dioxide composing the monolith by the metal acting as an oxygen getter, thereby obtaining a macroporous oxygen-deficient titanium oxide monolith having a co-continuous structure of the macropore and a framework that is composed of oxygen-deficient titanium oxide, the macroporous oxygen-deficient titanium oxide monolith having electron conductivity derived from the oxygen-deficient titanium oxide.