Abstract:
A communication device includes a first printed circuit board (PCB), a second PCB disposed parallel to the first PCB, a first shielding cage and a second shielding cage. The first and second shielding cages are fixed to the first and second PCBs and define at lease one first and second receiving space to receive at least one transceiver modules, respectively. The first and second shielding cages include at least one first and second retaining tabs, respectively. Each of the transceiver modules received in the first and second shielding cages includes a release mechanism configured with a release portion and a trigger. The release portions can match one corresponding first and second retaining tabs to release the corresponding transceiver module. The triggers are disposed on one side of the transceiver modules close to the first and the second PCBs.
Abstract:
A transceiver cage includes at least one first shield housing, at least one second shield housing, a top cover, and a bottom cover. The first shield housing includes a first upper wall, a first lower wall, and a pair of first sidewalls. The first upper wall, the first sidewalls, and the first lower wall cooperatively surround a first receiving space. The second shield housing stacked to the first shield housing, includes a second upper wall, a second lower wall, and a pair of second sidewalls. The top cover includes a top board, a rear board, and a pair of outer sideboards extending along the first sidewalls from the top board. The bottom cover includes a bottom board and a pair of inner sideboards lapping over the outer sideboards. The bottom cover is electronically connected with the top cover to receive the first shield housing and the second shield housing.
Abstract:
A method of data protection is used in a communication device. The communication may read a phone number of a subscriber identity module (SIM) card, and further determines whether the phone number conforms to a preset phone number stored in the communication device. Personal data stored in the communication device will be locked if the phone number does not conform to the preset phone number. The communication device further transmits a warning and location information of the communication device to a preset called communication device.
Abstract:
An optoelectronic transceiver module includes a cage, a transceiver module and a release mechanism. The cage defines an opening and includes a retaining tab formed around the opening. A retaining hole is defined in the retaining tab. The transceiver module received in the cage through the opening includes a first surface and a second surface opposite to the first surface. A fixed latch disposed on the first surface mates with the retaining hole so as to lock the transceiver module in the cage. The release mechanism includes a release trigger and a release lever inflexibly connected together. The release lever is disposed between the retaining tab and the transceiver module. The release trigger abuts the second surface. When the release trigger is pressed towards the second surface, the release lever is subsequently driven to disengage the fixed latch from the retaining tab.
Abstract:
An object is weighed using a portable electronic device. Placement of an object on a touch panel of the portable electronic device provides measurement of the weight of the object. In the measurement, the portable electronic device sends information to the touch panel to request a user to input a unit price of the object. The portable electronic device then detects a weight of the object placed on the touch panel. The portable electronic device calculates a total price of the object by multiplication of the input unit price and the detected weight of the object. The total price of the object can be then output.
Abstract:
An optoelectronic transceiver module includes a cage, a transceiver module, and a release mechanism. The release mechanism includes a latch and a trigger. The latch pivotally attaches to the transceiver module with a first pivot. The latch includes a latch block projecting from a first end of the latch operable to be received in the cage. The trigger pivotally attaches to a second end of the latch with a second pivot. The trigger includes a cam mechanism around the second pivot. When the transceiver module is received in the cage, the first end of the latch separates from the transceiver module. When the trigger rotates about the second pivot, the cam mechanism drives the second end of the latch apart from the transceiver module, and the first end of the latch moves correspondingly toward the transceiver module and the latch block withdraws from the cage.
Abstract:
An optoelectronic transceiver module includes a cage, a transceiver module, and a release mechanism. The release mechanism includes a latch and a trigger. The latch pivotally attaches to the transceiver module with a first pivot. The latch includes a latch block projecting from a first end of the latch operable to be received in the cage. The trigger pivotally attaches to a second end of the latch with a second pivot. The trigger includes a cam mechanism around the second pivot. When the transceiver module is received in the cage, the first end of the latch separates from the transceiver module. When the trigger rotates about the second pivot, the cam mechanism drives the second end of the latch apart from the transceiver module, and the first end of the latch moves correspondingly toward the transceiver module and the latch block withdraws from the cage.
Abstract:
A shielding assembly (100) for protecting several modules from electromagnetic interference, includes a cage (40) installable on a circuit board (200), a first gasket (20), and a second gasket (50). The cage includes a front end portion (41), a cover (42), a base (48), and at least one interior wall (44). The cover, the at least one interior wall and the base cooperatively define at least two spaces (400) for receiving the modules. The first gasket encircles the front end portion of the cage. The first gasket electrically and mechanically contacts the cover and the base to provide an electromagnetic interference seal between the cage and a device in which the cage is mounted. The second gasket attaches against the cage and the circuit board respectively so as to electrically shield the modules in the cage from electromagnetic interference.
Abstract:
A shielding assembly includes a cage (40), a shielding plate (10), and a gasket (50). The cage includes a front end portion (41), a rear end portion (43) opposite to the front end portion, a plurality of clips (45) protruding from the front end portion, a pair of sidewalls (44), and a back wall (46). The shielding plate attached to the front end portion of the cage, includes a main portion (12), a plurality of resilient tabs (14) projecting from an inner surface of the main portion, and a plurality of through hatches (16) in the main portion for receiving the clips. The gasket is attached to the rear end portion and abuts against outer surfaces (49) of the sidewalls and the back wall.