Abstract:
The present invention provides a method for reducing metal ions (for example, silver ions) and stably dispersing metal nanoparticles by nanosilicate platelets. An organic dispersant, nanosilicate platelets and a metal ionic solution are mixed to perform a reductive reaction, wherein the organic dispersant is tri-sodium citrate dihydrate (SCD), chitosan or polyvinyl pyrrolidone (PVP), to produce a mixture of stably dispersed metal nanoparticles.
Abstract:
The present invention discloses an inorganic/organic mixed component (I/O) dispersant and applications thereof, which is primarily applied to dispersing nanoparticles of metal oxides. The I/O dispersant of the present invention can be a composite of inorganic clay and an organic surfactant, a composite of inorganic clay and polyoxyalkylene-amine, or a composite of inorganic clay, polyisobutylene succinic anhydride (PIB-SA) and hydrochloric acid salt or tetraalkyl quaternary salt of polyoxyalkylene-amine, or fatty amines. By mixing with the I/O dispersant of the present invention, nanoparticles of a metal oxide can be uniformly dispersed without aggregation particularly at high solid content. The dispersion has a lower viscosity and is relatively stable in storage even at high temperature.
Abstract:
The present invention provides a method for reducing metal ions (for example, silver ions) and stably dispersing metal nanoparticles by nanosilicate platelets. An organic dispersant, nanosilicate platelets and a metal ionic solution are mixed to perform a reductive reaction, wherein the organic dispersant is tri-sodium citrate dihydrate (SCD), chitosan or polyvinyl pyrrolidone (PVP), to produce a mixture of stably dispersed metal nanoparticles.
Abstract:
The present invention relates to an exfoliating agent and to a process for producing random form of nanoscale silicate plates. Two types of exfoliating agents are applied in the present invention, which respectively have the formula: wherein R is a polyoxybutylene group, polyoxypropylene group, poly(oxyethylene/oxypropylene) group, or polyoxyethylene group. In this invention, layered silicate clays are exfoliated into random silicate plates by acidifying AMO or AEO with inorganic acid, adding the acidified AMO or AEO to layered silicate clay with agitation, and adding sodium hydroxide or chloride of alkali metal or alkaline-earth metal, in ethanol, water and a hydrophobic organic solvent to the intermediate product and repeating phase separation procedures to isolate random silicate plates from water phase.
Abstract:
The present invention discloses an inorganic/organic mixed component (I/O) dispersant and applications thereof, which is primarily applied to dispersing nanoparticles of metal oxides. The I/O dispersant of the present invention can be a composite of inorganic clay and an organic surfactant, a composite of inorganic clay and polyoxyalkylene-amine, or a composite of inorganic clay, polyisobutylene succinic anhydride (PIB-SA) and hydrochloric acid salt or tetraalkyl quaternary salt of polyoxyalkylene-amine, or fatty amines. By mixing with the I/O dispersant of the present invention, nanoparticles of a metal oxide can be uniformly dispersed without aggregation particularly at high solid content. The dispersion has a lower viscosity and is relatively stable in storage even at high temperature.
Abstract:
The present invention discloses an inorganic/organic mixed component (I/O) dispersant and applications thereof, which is primarily applied to dispersing nanoparticles of metal oxides. The I/O dispersant of the present invention can be a composite of inorganic clay and an organic surfactant, a composite of inorganic clay and polyoxyalkylene-amine, or a composite of inorganic clay, polyisobutylene succinic anhydride (PIB-SA) and hydrochloric acid salt or tetraalkyl quaternary salt of polyoxyalkylene-amine, or fatty amines. By mixing with the I/O dispersant of the present invention, nanoparticles of a metal oxide can be uniformly dispersed without aggregation particularly at high solid content. The dispersion has a lower viscosity and is relatively stable in storage even at high temperature.
Abstract:
The present invention relates to the preparation of hyperbranched polyamines and its use to exfoliate inorganic clays into random form of nanosilicate platelets. The hyperbranched polyamines serving as exfoliating agent are prepared by polymerizing poly(oxypropylene)-triamine and diglycidyl ether of bisphenol-A (DGEBA). Hydrophilic amine groups of the exfoliating agent are acidified and then reacted with the layered inorganic silicate clay through cation exchange reaction and physical clay exfoliation to give random form of nanosilicate platelets.
Abstract:
The present invention relates to an exfoliating agent and to a process for producing random form of nanoscale silica plates. The exfoliating agent applied in the present invention has the formula: wherein n=1 to 5 and R is a polyoxypropylene group, polyoxyethylene/oxypropylene group, or polyethylene amino group. In this invention, layered silicate clays are exfoliated into random silica plates by acidifying AMO with inorganic acid, adding the acidified AMO to layered silicate clay with agitation, and adding sodium hydroxide or chloride of alkali metal or alkaline-earth metal, in ethanol, water and a hydrophobic organic solvent to the intermediate product and repeating phase separation procedures to isolate random silica plates from water phase.
Abstract:
The present invention relates to an exfoliating agent and to a process for producing random form of nanoscale silica plates. Two types of exfoliating agents are applied in the present invention, which respectively have the formula: wherein R is a polyoxypropylene group, polyoxyethylene/oxypropylene group, or polyethylene amino group. In this invention, layered silicate clays are exfoliated into random silica plates by acidifying AMO or AEO with inorganic acid, adding the acidified AMO or AEO to layered silicate clay with agitation, and adding sodium hydroxide or chloride of alkali metal or alkaline-earth metal, in ethanol, water and a hydrophobic organic solvent to the intermediate product and repeating phase separation procedures to isolate random silica plates from water phase.
Abstract:
A method for producing random form of nanosilicate platelets comprises mixing and acidifying an exfoliating agent with an inorganic acid to form an acidified exfoliating agent; intercalating layered inorganic silicate clay with the acidified exfoliating agent to form a mixture; and dissolving the mixture in a solvent and reacting it with a hydroxide or chloride of alkali metal or alkaline-earth metal. The hyperbranched polyamines serving as the exfoliating agent are prepared by polymerizing poly(oxypropylene)-triamine and diglycidyl ether of bisphenol-A (DGEBA). Hydrophilic amine groups of the exfoliating agent are acidified and then reacted with the layered inorganic silicate clay through cation exchange reaction and physical clay exfoliation to give random form of nanosilicate platelets.