Abstract:
The present invention discloses a method for producing a clay/AMO complex by modifying layered inorganic silicate clay with the intercalating agent AMO (amine-terminated Mannich oligomer). The AMO is prepared by polymerizing polyoxyalkylene amine having molecular weight over 1000, p-cresol and formaldehyde. The present invention also discloses a method for producing nanosilicate plates by extracting the AMO from the above complex with a hydroxide or a chloride of alkali metal or alkaline-earth metal. The extracted AMO can be recycled for reusing.
Abstract:
The present invention discloses a clay/amine complex which is an excellent surfactant and a good reinforcing agent of polymers. The complex of the present invention can be produced by modifying layered inorganic silicate clay such as montomorillonite, with an intercalating agent, AMO (amine terminal-mannich oligomer). The AMO can be obtained by polymerizing polyoxyalkylene amine having molecular weight over 1000, p-cresol and formaldehyde. The present invention further discloses a nanosilica plate, which can be obtained by extracting the above complex with a hydroxide or a chloride of alkali metal or alkaline-earth metal, and consequently, the AMO intercalating agent can be recycled for reusing.
Abstract:
The present invention discloses a method for producing a clay/AMO complex by modifying layered inorganic silicate clay with the intercalating agent AMO (amine terminal-mannich oligomer). The AMO is prepared by polymerizing polyoxyalkylene amine having molecular weight over 1000, p-cresol and formaldehyde. The present invention also discloses a method for producing nanosilica plates by extracting the AMO from the above complex with a hydroxide or a chloride of alkali metal or alkaline-earth metal. The extracted AMO can be recycled for reusing.
Abstract:
The present invention provides a method for reducing metal ions (for example, silver ions) and stably dispersing metal nanoparticles by nanosilicate platelets. An organic dispersant, nanosilicate platelets and a metal ionic solution are mixed to perform a reductive reaction, wherein the organic dispersant is tri-sodium citrate dihydrate (SCD), chitosan or polyvinyl pyrrolidone (PVP), to produce a mixture of stably dispersed metal nanoparticles.
Abstract:
A phosphorous flame retardant including nanosilicate platelets (NSP) is made by first reacting hexachlorotriphosphazene (HCP) with poly(oxyalkylene)amine, then mixing the HCP product with nano silicate platelets (NSP) to obtain the phosphorous flame retardant including NSP. The phosphorous flame retardant can be further applied to an epoxy resin as a curing agent.
Abstract:
Polymeric polyamine is produced by polymerizing polyoxyalkylene-amine and a linker. The polyoxyalkylene-amine has a structural formula H2N—R—NH2, wherein R is selected from the group consisting of dianhydride, diacid, epoxy, diisocyanate and poly(styrene-co-maleic anhydride) copolymers (SMA). The linker can be anhydride, carboxylic acid, epoxy, isocyanate or poly(styrene-co-maleic anhydride) copolymers (SMA). The polymeric polyamine so produced can be used as a stabilizer or dispersant of the Ag nanoparticles.
Abstract:
The present invention provides a method for producing silver nanoparticles by employing ethanolamine. The method of this invention can be easily operated and no organic solvent is required. Ethanolamine first reacts with copolymers of poly(styrene-co-maleic anhydride) (abbreviated as SMA) to generate polymeric polymers. The polymeric polymers then reduce silver ions to silver atoms which are dispersed in the form of silver nanoparticles. Functional groups of the polymeric polymers can chelate with silver ions and be stably compatible with water or organic solvents, whereby the silver nanoparticles can be stably dispersed without aggregation and the produced silver nanoparticles.
Abstract:
The present invention provides a method for collecting oil with a modified clay. By mixing the modified clay and oil, the oil can be adsorbed to the clay. The modified clay is obtained by intercalating a hydrophobic polymer such as acidified poly(oxyalkylene)-amine into layered silicate clay, mica or talc to enlarge the interlayer space. The modified clay thus becomes hydrophobic and adsorption to the oil is promoted.
Abstract:
The present invention provides an organic/inorganic compositive dispersant and a method for producing the same. The compositive dispersant comprises a complex of inorganic clay and an organic surfactant. The compositive dispersant is produced by reacting inorganic clay with the organic surfactant in a solvent to generate a complex. The inorganic clay is layered or platelet. The organic surfactant is an anionic surfactant such as alkyl sulfates, a nonionic surfactant such as octylphenol polyethoxylate and polyoxyethylene alkyl ether, or a cationic surfactant such as fatty (C12˜C32) quaternary ammonium salts and fatty (C12˜C32) quaternary ammonium chlorides.
Abstract:
The present invention discloses an exfoliative clay and a derivative thereof and a method for producing the same. The exfoliative clay is formed by emulsion exfoliating an inorganic layered silicate clay with an amphibious intercalating agent by powerfully stirring at 60–180° C. and not less than 14.7 psig. The amphibious intercalating agent is obtained by copolymerizing polyoxyalkylene amine having molecular weight over 1,800 and polypropylene-grafting-maleic anhydride (PP-g-MA). Before emulsion exfoliation, the intercalating agent is acidified with an inorganic acid. The acidification is the key step for obtaining nanoscale of emulsifying particles less than 100 nm for the exfoliation. The exfoliative clay can be further extracted with a hydroxide or a chloride of alkali metal or alkaline-earth metal to obtain a derivative in the form of nanosilica plates which is free of organic portions.