Abstract:
Substantially quantitative yields of bibenzyl hydroperoxide and bibenzyl dihydroperoxide can be obtained when oxygen is reacted with bibenzyl (1,2-diphenylethane) in the presence of a minor amount of sodium bicarbonate at a temperature within the range of about 100.degree. to about 160.degree. C. to provide an oxidation product wherein the bibenzyl is substantially selectively converted to the bibenzyl hydroperoxides. The bibenzyl hydroperoxides can be used as raw materials for the production of propylene oxide by reacting the bibenzyl hydroperoxides with propylene.
Abstract:
A process for simultaneously producing an epoxide and a carboxylic acid from an olefin and an aldehyde, respectively, by co-oxidation over a catalyst in the presence of oxygen is described. The catalyst is made by precipitating silver oxide in the presence of copper(II) oxide, copper(II) borate or a mixture thereof. These novel heterogeneous catalysts provide higher selectivities to the epoxide than those obtainable with commercial catalysts.
Abstract:
It has been surprisingly discovered in accordance with the present invention that when 1,3-dioxolane is reacted with formaldehyde in the presence of tert-butyl hydroperoxide and a cobalt initiator, the reaction preferentially involves an addition of the formaldehyde to the 2-methylene group of the 1,3-dioxolane with only minor reaction with the 4-methylene and 5-methylene groups of the 1,3-dioxolane whereby the reaction product that is formed contains significant quantities of 2-hydroxyalkyl-1,3-dioxolanes and only minimal amounts of the undesired methyl formate by-product. 2-Hydroxymethyl-1,3-dioxolane is hydrolyzed with comparative ease to ethylene glycol and the corresponding glycol aldehyde (CHO--CH.sub.2 --OH). The glycol aldehyde in turn can be catalytically hydrogenated to form additional quantities of ethylene glycol.
Abstract:
The oxidation of isobutane in the presence of a novel, soluble catalyst of the formula Fe.sub.3 O(Pivalate).sub.6 (MeOH).sub.3 Cl is disclosed. Tertiary-Butyl alcohol, tertiary-butyl hydroperoxide, and acetone are produced. A significant increase in isobutane conversion is obtained without a large decrease in selectivity to tertiary-butyl alcohol and tertiary-butyl hydroperoxide using a small amount of catalyst. Tertiary-butyl alcohol is useful as a gasoline additive and tertiary-butyl hydroperoxide is used for the production of propylene oxide. Acetone has a variety of uses as well.
Abstract:
The synthesis of substituted dioxolanes by direct oxidation of olefins over a molybdenum 8-hydroxyquinoline catalyst in the presence of water is described. An organic solvent such as chlorobenzene may also be employed. Water is essential to the reaction to make the dioxolanes, otherwise olefin oxides are produced. Hence, 4-methyl-1,3-dioxolane and 2,4-dimethyl-1,3-dioxolane were prepared from propylene oxidation, and three isomers of 2,4,5-trimethyl-1,3-dioxolane were prepared from 2-butene oxidation.
Abstract:
The present invention provides a method for reducing metal ions (for example, silver ions) and stably dispersing metal nanoparticles by nanosilicate platelets. An organic dispersant, nanosilicate platelets and a metal ionic solution are mixed to perform a reductive reaction, wherein the organic dispersant is tri-sodium citrate dihydrate (SCD), chitosan or polyvinyl pyrrolidone (PVP), to produce a mixture of stably dispersed metal nanoparticles.
Abstract:
A phosphorous flame retardant including nanosilicate platelets (NSP) is made by first reacting hexachlorotriphosphazene (HCP) with poly(oxyalkylene)amine, then mixing the HCP product with nano silicate platelets (NSP) to obtain the phosphorous flame retardant including NSP. The phosphorous flame retardant can be further applied to an epoxy resin as a curing agent.
Abstract:
Polymeric polyamine is produced by polymerizing polyoxyalkylene-amine and a linker. The polyoxyalkylene-amine has a structural formula H2N—R—NH2, wherein R is selected from the group consisting of dianhydride, diacid, epoxy, diisocyanate and poly(styrene-co-maleic anhydride) copolymers (SMA). The linker can be anhydride, carboxylic acid, epoxy, isocyanate or poly(styrene-co-maleic anhydride) copolymers (SMA). The polymeric polyamine so produced can be used as a stabilizer or dispersant of the Ag nanoparticles.
Abstract:
The present invention provides a method for producing silver nanoparticles by employing ethanolamine. The method of this invention can be easily operated and no organic solvent is required. Ethanolamine first reacts with copolymers of poly(styrene-co-maleic anhydride) (abbreviated as SMA) to generate polymeric polymers. The polymeric polymers then reduce silver ions to silver atoms which are dispersed in the form of silver nanoparticles. Functional groups of the polymeric polymers can chelate with silver ions and be stably compatible with water or organic solvents, whereby the silver nanoparticles can be stably dispersed without aggregation and the produced silver nanoparticles.
Abstract:
The present invention provides a method for collecting oil with a modified clay. By mixing the modified clay and oil, the oil can be adsorbed to the clay. The modified clay is obtained by intercalating a hydrophobic polymer such as acidified poly(oxyalkylene)-amine into layered silicate clay, mica or talc to enlarge the interlayer space. The modified clay thus becomes hydrophobic and adsorption to the oil is promoted.