Abstract:
A geophysical data acquisition system includes at least one geophysical sensor. The at least one geophysical sensor has associated therewith a signal generator configured to generate a signal corresponding to a type of the at least one geophysical sensor. The system includes at least one signal acquisition unit having a plurality of input channels. The at least one geophysical sensor is in signal communication with one of the plurality of input channels. The plurality of input channels each includes a detector for receiving and identifying the signal generated by the signal generator. The at least one signal acquisition unit includes amplification, filtering and digitizing circuits automatically configurable in response to the type of sensor identified by the detected signal.
Abstract:
A mobile hotspot device may be used to interface one or more host computing devices with a wireless wide area network. The mobile hotspot device is powered by a high-capacity lithium ion (Li-Ion) cylindrical battery pack(s) and has a small, pen-like form factor. Use of the Li-Ion cylindrical battery pack(s) improves mobile hotspot device talk time over prismatic battery cell technology, as well as avoids premature device/modem shutdown experienced when a prismatic battery cell is proximate to a printed circuit assembly of the mobile hotspot device. Additionally still, Li-Ion cylindrical battery pack(s) avoid negatively impacting volume capacity of the mobile hotspot device. Further still, use of the Li-Ion cylindrical battery pack(s) allows for unique, interactive information display, as well as evolutionary mobile hotspot device design and form factors.
Abstract:
The present invention provides a method for redirecting roaming traffic of a roamer associated with an HPMN and currently roaming in a first VPMN. The method includes detecting by a detection unit coupled to the first VPMN, a registration attempt of the roamer at a second VPMN, upon receipt of a first registration cancellation message of one or more registration cancellation messages, sent by the HPMN. Finally, the method includes causing the HPMN to send a registration response message to a VLR associated with the second VPMN, to thwart the registration attempt of the roamer at the second VPMN, by sending one or more registration messages to the HPMN from a redirection unit coupled to the first VPMN. The redirection unit further facilitates the roamer's mobile communication when the roamer's handset gets stuck in the second VPMN.
Abstract:
A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields can include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
Abstract:
A system for implementing call control services for an inbound roamer is provided. The system includes a control node to implement the call control services in response to an initiation request. The system further includes a service node to send a terminating customized applications for mobile network enhanced logic subscription information (T-CSI) for a called number in response to a routing request for the called number. The T-CSI contains an address pointing to the control node. The system further includes a switching center to send the routing request for the called number. The called number is present in a call received from the inbound roamer.
Abstract:
The present invention relates to a series of substituted indole derivatives of the formula I: wherein R, R1, R2, R3, R4, X and Y are as defined herein. This invention also relates to methods of making these compounds. The compounds of this invention are inhibitors of poly(adenosine 5′-diphosphate ribose) polymerase (PARP) and are therefore useful as pharmaceutical agents, especially in the treatment and/or prevention of a variety of diseases, including diseases associated with the central nervous system and cardiovascular disorders.
Abstract:
A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields may include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size. To further increase voltage breakdown, a coating on the ceramic capacitor may be used.
Abstract:
A multilayer ceramic capacitor component includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers, first and second external terminals attached to the ceramic capacitor body. The plurality of electrode layers include a plurality of alternating layers of active electrodes extending inwardly from alternating ends of the ceramic capacitor body. The capacitor may include a plurality of side shields disposed within the plurality of alternating layers of active electrodes to provide shielding with the alternating layers of active electrodes having a pattern to increase overlap area to provide higher capacitance without decreasing separation between the alternative layers of active electrodes. The capacitor may have a voltage breakdown of 3500 volts DC or more in air. The capacitor may have a coating. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.
Abstract:
The present invention provides a method for enabling support of IN services for an HPMN's outbound roamer. The method provides a client-server architecture that enables exchange of messages between a client coupled to the outbound roamer's mobile device and a gateway coupled to the HPMN network. The method includes enabling a client on the outbound roamer's mobile device after successful registration of the outbound roamer with a VPMN and based on exchange of one or more parameters, encapsulated over one or more bearers, with a gateway. Moreover, the HPMN and the VPMN do not support either exchange of IN messages or an IN agreement. The method further includes facilitating communication between the client and an HPMN service node or an HPMN SCP, via the gateway that facilitates communication by translating the encapsulated IN messages in a protocol compatible with either the service node or the SCP. The method further includes managing the IN services using the gateway and either the service node or the SCP, by updating the outbound roamer's one or more traffic control conditions at the client.
Abstract:
A capacitor includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers and first and second external terminals attached to the ceramic capacitor body. The internal active electrodes within the ceramic capacitor body are configured in an alternating manner. Internal electrode shields within the ceramic capacitor body are used to assist in providing resistance to arc-over. The shields can include a top internal electrode shield and an opposite bottom internal electrode shield wherein the top internal electrode shield and the opposite bottom internal electrode shield are on opposite sides of the plurality of internal active electrodes and each internal electrode shield extends inwardly to or beyond a corresponding external terminal to thereby provide shielding. Side shields are used. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size.