Abstract:
The present invention is directed to an electrical contact probe, comprising at least one fiber mounted in a holder, the at least one fiber having high electrical conductivity and high mechanical strength and made from a material selected from the group consisting of a conductive organic material and a conductive glass, the at least one fiber having a diameter in the range from 5 nanometers to 20 micrometers. The present invention is also directed to a device to measure various electrical parameters of a circuit.
Abstract:
The invention provides a simple and inexpensive method to assemble nanomaterials into millimeter lengths. The method can be used to generate optical, sensing, electronic, magnetic and or catalytic materials. Also provided is a substrate comprised of fused nanoparticles. The invention also provides a diode comprised of assembled nanoparticles.
Abstract:
A device for generating and guiding an electric discharge current including a first electrode, second electrode and a material arranged between the first and second electrode. The device uses a laser for generating photons having energies equal to the energy between two excited electronic states of the material. The photons fill a region of the material from the first electrode through the material to the second electrode ionizing the region of the material between the first and second electrodes. A voltage generating unit connected to the first and second electrodes applies a voltage between the first and second electrodes thereby generating the electric discharge which follows an ionized path in the region between the first and second electrodes.
Abstract:
The invention provides a simple and inexpensive method to assemble nanomaterials into millimeter lengths. The method can be used to generate optical, sensing, electronic, magnetic and or catalytic materials. Also provided is a substrate comprised of fused nanoparticles. The invention also provides a diode comprised of assembled nanoparticles.
Abstract:
A device and method for generating and guiding an electric discharge current including a first electrode, a second electrode and a material arranged between the first and second electrodes. The device and method involve the use of a laser for generating photons having energies equal to the energy between two excited electronic states of the material. The photons fill a region of the material from the first electrode through the material to the second electrode, ionizing the region of the material between the first and second electrodes. A voltage generating unit connected to the first and second electrodes applies a voltage between the first and second electrodes thereby generating the electric discharge which follows an ionized path in the region between the first and second electrodes. A solenoid is arranged around the housing so that the magnetic field which it produces is oriented approximately along the ionized path, thereby providing improved confinement of the electric discharge.
Abstract:
The method of producing specific cluster ions utilizing an ionization source to produce ions which are then sorted or resolved according to velocity and mass. The selected ions are passed through a growth chamber containing a gaseous vapor of a specified element and are coated by the vapor to provide coated cluster ions. The coated cluster ions are mass selected and held in an ion trap.
Abstract:
A noncontact method and apparatus for testing electrical circuitry which provides large improvements in both resolution and speed. The attributes of noncontact, high resolution, and speed are satisfied by using inexpensive low intensity resonant laser beams in a shroud gas preferably comprising rubidium atoms in argon gas to create an electrically conductive ion channel microprobe. The conductive ion channel microprobe can be used to create an electrically conductive path between a circuit's test pad or point and signal generation and detection apparatus. If the circuit's test pad or point is functioning properly, then the ion channel microprobe will complete the electrically conductive path, the signal generation device will produce a signal over the conductive path and the signal detection device will detect or measure the signal. If the circuit's test pad or point is malfunctioning, the conductive path will remain open and the signal detection device will not detect a signal.
Abstract:
A system for testing the electrical conductivity of printed traces, on multiple surfaces, of a printed wiring board using non-contacting probes. The non-contact probes generate a plasma in a plasma generating chamber that is used to apply a voltage to the printed wiring board. A measurement circuit determines the magnitude of the voltage on the printed wiring board.
Abstract:
A multiple single frequency laser for optical manipulation of molecules is presented. The multiple single frequency laser comprises generally a multiline laser source which utilizes one sample of molecular species as a source for the generation of optical radiation for manipulating (e.g., cooling) a second, separate sample of the same species of molecules. More specifically, the multiple single frequency (MSF) laser comprises a master controller for controlling the frequency of powerful single frequency pump lasers. Laser beams from the pump lasers excite coherent Raman transitions in molecules contained in a Raman gain cell. These beams are tuned to specific optical transitions in an electronic band of molecules. The molecules contained in the Raman gain cell generate the multiple frequencies needed to manipulate (e.g., cool) the same species of molecules in a second, separate sample. The Raman gain cell provides an output beam which is presented to a multistage optical amplifier for generating an amplified output beam. The amplified output beam is presented to a wavelength selector where unwanted frequencies are eliminated resulting in a MSF output beam. MSF output beam includes multiple laser frequencies all of which are synchronously controlled by controlling the frequency of the pump laser via the controller.
Abstract:
A cluster ion synthesis process utilizing a containerless environment to grow in a succession of steps cluster ions of large mass and well defined distribution. The cluster ion growth proceeds in a continuous manner in a plurality of growth chambers which have virtually unlimited storage times and capacities.