Abstract:
In manufacturing a crystalline silicon-based solar cell, a first intrinsic thin-film is formed on a conductive single-crystalline silicon substrate, and then a hydrogen plasma etching is performed. A second intrinsic thin-film is formed on the first intrinsic thin-film after the hydrogen plasma etching, and a conductive silicon-based thin-film is formed on the second intrinsic thin-film. The second intrinsic thin-film is formed by plasma-enhanced CVD with a silicon-containing gas and hydrogen being introduced into a CVD chamber. The amount of the hydrogen introduced into the CVD chamber during formation of the second intrinsic thin-film is 50 to 500 times an introduction amount of the silicon-containing gas.
Abstract:
A manufacturing method includes steps of forming a texture on a surface of a single-crystalline silicon substrate, cleaning the surface of the single-crystalline silicon substrate using ozone, depositing an intrinsic silicon-based layer on the texture on the single-crystalline silicon substrate, and depositing a conductive silicon-based layer on the intrinsic silicon-based layer, in this order. The single-crystalline silicon substrate before deposition of the intrinsic silicon-based layer has a texture size of less than 5 μm. A recess portion of the texture has a curvature radius of less than 5 nm. After deposition of at least a part of the intrinsic silicon-based layer and before deposition of the conductive silicon-based layer, the intrinsic silicon-based layer is subjected to a plasma treatment in an atmosphere of a gas mainly composed of hydrogen.
Abstract:
The crystalline silicon-based solar cell includes a first intrinsic silicon-based thin-film, a p-type silicon-based thin-film, a first transparent electrode layer, and a patterned collecting electrode on a first principal surface of an n-type crystalline silicon substrate; and a second intrinsic silicon-based thin-film, an n-type silicon-based thin-film, a second transparent electrode layer, and a plated metal electrode on a second principal surface of the n-type crystalline-silicon substrate. On a peripheral edge of the first principal surface, an insulating region freed of a short-circuit between the first transparent electrode layer and the second transparent electrode layer is provided. The plated metal electrode is formed on an entire region of the second transparent electrode layer.
Abstract:
In manufacturing a crystalline silicon-based solar cell having an intrinsic silicon-based thin film and a conductive silicon-based thin film in this order on a conductive single-crystalline silicon substrate, plasma treatment is performed after the intrinsic silicon-based thin film is formed on the conductive single-crystalline silicon substrate. In the plasma treatment, a surface of the intrinsic silicon-based thin film is exposed to hydrogen plasma while a hydrogen gas and silicon-containing gases are being introduced into a CVD chamber. The amount of the hydrogen introduced into the CVD chamber during the plasma treatment is 150 to 2500 times the introduction amount of the silicon-containing gases.
Abstract:
A method for manufacturing a crystalline silicon-based solar cell includes forming a first intrinsic silicon-based thin-film on a first principal surface and a lateral surface of an n-type crystalline silicon substrate, forming a p-type silicon-based thin-film on the first intrinsic silicon-based thin-film, forming a first transparent electrode layer on an entire region of the first principal surface except for a peripheral portion, forming a second intrinsic silicon-based thin-film on a second principal surface and the lateral surface of the n-type crystalline silicon substrate, forming an n-type silicon-based thin-film on the second intrinsic silicon-based thin-film, forming a second transparent electrode layer on an entire region of the second principal surface and the lateral surface of the n-type crystalline silicon substrate, forming a patterned collecting electrode on the first transparent electrode layer, and forming a plated metal electrode on the second transparent electrode layer by an electroplating method.
Abstract:
The crystalline silicon-based solar cell according to the present invention includes a first intrinsic silicon-based thin-film, a p-type silicon-based thin-film, a first transparent electrode layer, and a patterned collecting electrode on a first principal surface of an n-type crystalline silicon substrate; and a second intrinsic silicon-based thin-film, an n-type silicon-based thin-film, a second transparent electrode layer, and a plated metal electrode on a second principal surface of the n-type crystalline-silicon substrate. On a peripheral edge of the first principal surface, an insulating region freed of a short-circuit between the first transparent electrode layer and the second transparent electrode layer is provided. The plated metal electrode is formed on an entire region of the second transparent electrode layer.
Abstract:
A solar cell includes a crystal substrate which has a major surface on a light reception side provided with a first texture surface and a major surface on a non-light reception side provided with a second texture surface. The second texture surface occupies 20% or more of the area of the major surface on the non-light reception side.
Abstract:
In manufacturing a crystalline silicon-based solar cell having an intrinsic silicon-based thin film and a conductive silicon-based thin film in this order on a conductive single-crystalline silicon substrate, plasma treatment is performed after the intrinsic silicon-based thin film is formed on the conductive single-crystalline silicon substrate. In the plasma treatment, a surface of the intrinsic silicon-based thin film is exposed to hydrogen plasma while a hydrogen gas and silicon-containing gases are being introduced into a CVD chamber. The amount of the hydrogen introduced into the CVD chamber during the plasma treatment is 150 to 2500 times the introduction amount of the silicon-containing gases.
Abstract:
A solar cell of the present invention includes a collecting electrode on one main surface of a photoelectric conversion section. The collecting electrode includes first and second electroconductive layers in this order from the photoelectric conversion section side, and an insulating layer between the first and second electroconductive layers, the insulating layer having an opening section formed therein. The first electroconductive layer is covered with the insulating layer, contains a low-melting-point material, and is conductively connected with a part of the second electroconductive layer via the opening section. The surface roughness of the second electroconductive layer is preferably 1.0 μm to 10.0 μm. The second electroconductive layer is preferably formed by a plating method. In order to conductively connect the first and second electroconductive layers, annealing of the first electroconductive layer by heating is preferably performed prior to forming the second electroconductive layer.
Abstract:
A solar cell of the present invention includes a collecting electrode on one main surface of a photoelectric conversion section. The collecting electrode includes first and second electroconductive layers in this order from the photoelectric conversion section side, and an insulating layer between the first and second electroconductive layers, the insulating layer having an opening section formed therein. The first electroconductive layer is covered with the insulating layer, contains a low-melting-point material, and is conductively connected with a part of the second electroconductive layer via the opening section. The surface roughness of the second electroconductive layer is preferably 1.0 μm to 10.0 μm. The second electroconductive layer is preferably formed by a plating method. In order to conductively connect the first and second electroconductive layers, annealing of the first electroconductive layer by heating is preferably performed prior to forming the second electroconductive layer.