METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR BREAST DENSITY CLASSIFICATION USING PARTS-BASED LOCAL FEATURES
    3.
    发明申请
    METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR BREAST DENSITY CLASSIFICATION USING PARTS-BASED LOCAL FEATURES 有权
    使用基于部件的本地特征的乳腺密度分类的方法,系统和计算机程序产品

    公开(公告)号:US20160314579A1

    公开(公告)日:2016-10-27

    申请号:US14797977

    申请日:2015-07-13

    Abstract: An automated content-based image retrieval method, a system and a computer program product for the classification of breast density from mammographic imagery. Raw digital mammogram images taken of patients are initially pre-processed to remove noise and enhance contrast, then subjected to pectoral muscle segmentation to produce region of interest (ROI) images. The ROI images are then decomposed using non-negative matrix factorization (NMF), where a non-negative sparsity constraint and reconstruction quality measures are imposed on the extracted and retained first few NMF factors. Based on the retained NMF factors, kernel matrix-based support vector machines classify the mammogram images binomially or multinomially to breast density categories. Methods of assessing and comparing the NMF-based breast classification method to principal component analysis or PCA-based methods are also described, and the NMF-based method is found to achieve higher classification accuracy and better handling of invariance in the digital mammogram images because of its parts-based factorization.

    Abstract translation: 一种基于内容的自动图像检索方法,一种用于从乳房X线照相图像分类乳腺密度的系统和计算机程序产品。 最初对病人拍摄的原始数字乳房X线照片图像进行预处理,以消除噪音并增强对比度,然后进行胸肌分割以产生感兴趣区域(ROI)图像。 然后使用非负矩阵分解(NMF)分解ROI图像,其中对提取和保留的最初几个NMF因子施加非负稀疏约束和重建质量测量。 基于保留的NMF因子,基于内核矩阵的支持向量机将乳房X线照片图像二进制或多次分类为乳腺密度类别。 还描述了将基于NMF的乳房分类方法与主成分分析或基于PCA的方法进行评估和比较的方法,并且发现基于NMF的方法能够实现更高的分类精度和更好地处理数字乳房X线照片图像中的不变性,因为 其基于零件的分解。

    METHOD FOR FAST PREDICTION OF GAS COMPOSITION
    4.
    发明申请
    METHOD FOR FAST PREDICTION OF GAS COMPOSITION 审中-公开
    快速预测气体组成的方法

    公开(公告)号:US20160086087A1

    公开(公告)日:2016-03-24

    申请号:US14491373

    申请日:2014-09-19

    Inventor: Lahouari GHOUTI

    CPC classification number: C10G7/12 C10G2300/1033 G06N3/02

    Abstract: A method and device for predicting a gas composition, including pre-processing, by non-negative matrix factorization, a set of input parameters related to a fluid mixture of hydrocarbons and non-hydrocarbons fed into a multistage separator, and training an extreme learning machine model to predict the composition of non-hydrocarbons in the fluid mixture.

    Abstract translation: 一种预测气体组成的方法和装置,包括通过非负矩阵分解进行预处理,一组与烃类和非烃类的流体混合物相关的输入参数,其被馈送到多级分离器中,以及训练极端学习机 模型来预测流体混合物中非碳氢化合物的组成。

Patent Agency Ranking