Abstract:
A method embodiment includes providing a reticle design data that specify a plurality of printable features that are formed on the wafer using the reticle and a plurality of nonprintable features that are not formed on the wafer using such reticle, wherein the reticle design data is usable to fabricate the reticle. A reduced design database is generated from the reticle design data and this reduced design database includes a description or map of the nonprintable features of the reticle, a description or map of a plurality of cell-to-cell regions of the reticle, and a grayscale reticle image that is rasterized from the reticle design data. The reduced design database, along with the reticle, is transferred to a fabrication facility so that the reduced design database is usable to periodically inspect the reticle in the fabrication facility.
Abstract:
A method embodiment includes providing a reticle design data that specify a plurality of printable features that are formed on the wafer using the reticle and a plurality of nonprintable features that are not formed on the wafer using such reticle, wherein the reticle design data is usable to fabricate the reticle. A reduced design database is generated from the reticle design data and this reduced design database includes a description or map of the nonprintable features of the reticle, a description or map of a plurality of cell-to-cell regions of the reticle, and a grayscale reticle image that is rasterized from the reticle design data. The reduced design database, along with the reticle, is transferred to a fabrication facility so that the reduced design database is usable to periodically inspect the reticle in the fabrication facility.
Abstract:
A detection method for a spot image based thin line detection is disclosed. The method includes a step for constructing a band limited spot image from a transmitted and reflected optical image of the mask. The spot image is calibrated to reduce noise introduced by the one or more inspection systems. Based on the band limited spot image, a non-printable feature map is generated for the non-printable features and a printable feature map is generated for the printable features. One or more test images of the mask are analyzed to detect defects on such mask. A sensitivity level of defect detection is reduced in areas of the one or more test images defined by the non-printable feature map, as compared with areas of the one or more test images that are not defined by the non-printable features map
Abstract:
A detection method for a spot image based thin line detection is disclosed. The method includes a step for constructing a band limited spot image from a transmitted and reflected optical image of the mask. The spot image is calibrated to reduce noise introduced by the one or more inspection systems. Based on the band limited spot image, a non-printable feature map is generated for the non-printable features and a printable feature map is generated for the printable features. One or more test images of the mask are analyzed to detect defects on such mask. A sensitivity level of defect detection is reduced in areas of the one or more test images defined by the non-printable feature map, as compared with areas of the one or more test images that are not defined by the non-printable features map