Abstract:
A method is disclosed of capturing an image of a wound on a subject for wound assessment. The method includes obtaining an image of a portion of the subject with one or more cameras; displaying the image on a display panel on an imaging device; obtaining a stored condition from a memory; obtaining a present condition; comparing the stored condition and the present condition; displaying a crosshair over the image on the display panel when it is decided that the present condition corresponds to the stored condition on the basis of the comparison; receiving an instruction for capturing; and capturing an image of the wound in response to the received instruction.
Abstract:
A method for managing reproduction of a print generation of a document, where a machine-readable pattern of the original print has been previously generated and printed on the original print and containing document registration and management information of the original print. The method includes the steps of receiving a print-on-demand (POD) job order for producing a reprint of the original print, retrieving document registration information and print management information from the machine-readable pattern, authenticating the original print based on the document registration information, verifying reprint permission based on the print management information, generating a new machine-readable pattern for the reprint, maintaining a master machine-readable pattern on a digital form of the document or a data file for the document with updated information of the reprint, and completing the POD job order by producing the reprint with the new machine-readable pattern.
Abstract:
To identify emphasized text, bounding boxes are based on clusters resulting from horizontal compression and horizontal morphological dilation. The bounding boxes are processed to determine if any contain words or characters in bold. A bounding box is eliminated based on a comparison of its density and an average density across all bounding boxes. If its density is greater, text elements within the bounding box are evaluated to determine whether the text element is bold.
Abstract:
A document authentication method determines the authenticity of a target hardcopy document, which purports to be a true copy of an original hardcopy document. The method compares a binarized image of the target document with a binarized image of the original document which has been stored in a storage device. The image of the original document is generated by binarizing a scanned grayscale image of the original document. Halftone and non-halftone text areas in the grayscale image area separated, and the two types of text are separately binarized. The non-halftone text areas are then down-sampled. During authenticating, a scanned grayscale image of the target document is binarized by separating halftone and non-halftone text areas and binarizing them separately, and then down-sampling the non-halftone text areas. The binarized images of the target document and the original document are compared to determine the authenticity of the target document.
Abstract:
A method for encoding and decoding color barcodes to increase their data capacity. The encoding steps include determining a shape, a foreground color and a background color for each data cell, wherein a combination of the shape, foreground and background colors for the data cell is chosen from a plurality of such combinations in accordance with a value of the digital data to be encoded; and coloring some pixels in the data cell with a foreground color and other pixels with a background color, in accordance with the shape, foreground and background colors for the data cell determined above. The decoding steps include segmenting the data cells, recognizing a shape, a foreground color of the shape and a background color of the data cell, and obtaining digital data from a combination of the shape and foreground and background colors in each data cell.
Abstract:
A method, computer program product, and a system for enhancing an interaction between a teacher and a student are disclosed, the method includes receiving video images of a region of interest from a plurality of multi-functional devices; comparing the video images of the region of interest received from the plurality of multi-functional devices; detecting differences in the region of interest of at least one multi-functional device in comparison to the region of interest of the plurality of multi-functional devices; and providing a signal to the at least one multi-functional device based on the detected difference in the region of interest.