Abstract:
A method, computer program product, and a system for enhancing an interaction between a teacher and a student are disclosed, the method includes receiving video images of a region of interest from a plurality of multi-functional devices; comparing the video images of the region of interest received from the plurality of multi-functional devices; detecting differences in the region of interest of at least one multi-functional device in comparison to the region of interest of the plurality of multi-functional devices; and providing a signal to the at least one multi-functional device based on the detected difference in the region of interest.
Abstract:
A method for separating foreground and background contents in a document image is provided. The method first computes a pixel-wise map of maximal local features (e.g., local variance, local contrast, etc.), which is binarized to generate a mask for potential foreground. In order to utilize color information effectively, the local feature map is computed using all color channels of the image. Then the background image is obtained by inpainting the mask regions from the non-mask regions of the original document image. Adaptive thresholding is applied to the difference between the original document image and the background image to obtain the binary foreground image. Post-processing of the binary foreground image can further remove undesirable elements. Finally, a more accurate background image can be obtained by inpainting the original document image using the binary foreground image as a mask.
Abstract:
A method for encoding and decoding color barcodes to increase their data capacity. The encoding steps include determining a shape, a foreground color and a background color for each data cell, wherein a combination of the shape, foreground and background colors for the data cell is chosen from a plurality of such combinations in accordance with a value of the digital data to be encoded; and coloring some pixels in the data cell with a foreground color and other pixels with a background color, in accordance with the shape, foreground and background colors for the data cell determined above. The decoding steps include segmenting the data cells, recognizing a shape, a foreground color of the shape and a background color of the data cell, and obtaining digital data from a combination of the shape and foreground and background colors in each data cell.