Abstract:
The intensity of an X-ray signal received at a detector after passing through an object of interest is a function of the attenuation, phase change, and scattering caused by the object of interest. In traditional X-ray systems, it was not possible to resolve these components. This application discusses an X-ray measurement technique which is insensitive to the variations in the interferometric pattern caused by phase differences in portions of the object of interest. Thus, received intensity measurements are caused only by attenuation and scattering components. By making two independent measurements of the object of interest using such a phase-invariant imager, the attenuation and scattering components may be separated, providing valuable extra information about the imaged object of interest arising from so-called “dark field” effects.
Abstract:
In a conventional phase-contrast X-ray imaging system, a source grating G0 generates an array of partially coherent line sources which illuminate an object and thereafter phase grating G1. The periodicity in the phase grating is self-imaged at certain instances further away from the X-ray source and sampled by a mechanically movable third absorptive analyzer grating G2 before the demodulated fringe intensity is detected by a conventional X-5 ray detector. This application proposes to directly demodulate the fringe intensity using a structured scintillator having a plurality of slabs in alignment with sub-pixels of an optical detector layer, in combination with electronic signal read-out approaches. Therefore, a mechanically movable third absorptive analyzer grating G2 can be omitted from a phase-contrast X-ray imaging system.
Abstract:
The invention relates to a grating arrangement and a method for spectral filtering of an X-ray beam (B), the grating arrangement comprising: a dispersive element (10) comprising a prism configured to diffract the X-ray beam (B) into a first beam component (BC1) comprising a first direction (D1) and a second beam component comprising (BC2) a second direction (D2), tilted with respect to the first direction; a first grating (20) configured to generate a first diffraction pattern (DP1) of the first beam component (BC1) and a second diffraction pattern (DP2) of the second beam component (BC2), the second diffraction pattern (DP2) shifted with respect to the first diffraction patter (DP1); and a second grating (30) comprising at least one opening (31) which is aligned along a line (d) from a maximum (MA) to a minimum (MI) of intensity of the first diffraction pattern (DP1) or of the second diffraction pattern (DP2).
Abstract:
The invention is related to processing x-ray imaging data, specifically phase contrast x-ray imaging data, and addresses the problems associated, for example, with vibrations in grating-based differential phase contrast imaging by making use of spectral information. It was realized that one may make use of the spectral information in determining the vibration state of the Moiré pattern based on multi-energy-bin x-ray detectors, the energy independence of vibration-induced Moiré pattern phase shifts, the energy dependence of object-induced Moiré pattern phase shifts and a phantom designed to allow for measuring the dependence of the object-induced phase shift as a function of the energy bin. In particular, it was found that by suitable data processing the vibration-induced shifts and the like can be disentangled from the object properties and hence vibration artifacts in the image are reduced, while there is no particular need for changing the basic physical structure of the imaging device.
Abstract:
The invention relates to an X-ray detector arrangement (10) for X-ray phase contrast tomo-synthesis imaging, a line detector (1) for X-ray phase contrast tomo-synthesis imaging, an imaging system (24) for X-ray phase contrast tomo-synthesis imaging, a method for X-ray phase contrast tomo-synthesis imaging, and a computer program element for controlling such arrangement and a computer readable medium having stored such computer program element. The X-ray detector arrangement (10) comprises several line detectors (1). Each line detector (1) is configured to detect a Moiré pattern in at least a portion of an X-ray beam (2) impacting such line detector (1). Each line detector (1) comprises several detector lines (11), wherein a width W of each line detector (1) equals one period or an integer multiple of the period of the Moiré pattern.
Abstract:
The present invention relates to a system (100) and a method for correcting a number of counts (115) in an energy bin of X-ray photons detected by a photon counting detector (111) for a spectral computed tomography system (300). An illumination history (125) of the photon counting detector is taken into account to determine a gain and/or an offset of the photon counting detector. The number of counts in an energy bin of detected photons is corrected according to a correction value (135) corresponding to the determined gain and/or offset.
Abstract:
The present invention relates to a photon counting detector comprising a first direct conversion layer (10) comprising a low-absorption direct conversion material (11) for converting impinging high-energy electromagnetic radiation (100) into a first count signal and first electrical contacts (12), a second direct conversion layer (20) comprising a high-absorption direct conversion material (21) for converting impinging high-energy electromagnetic radiation (100) into a second count signal and second electrical contacts (22), said high-absorption direct conversion material having a higher absorption than said low-absorption direct conversion material, and a carrier layer (30, 30a, 30b) comprising first and second terminals (31, 32) in contact with the first and second electrical contacts and processing circuitry (35) configured to correct, based on the first count signal, the second count signal for errors, wherein said first direct conversion layer and the second direct conversion layer are arranged such that the high-energy electromagnetic radiation transmits the first direct conversion layer before it hits the second direct conversion layer.
Abstract:
The invention relates to a source-detector arrangement (11) of an X-ray apparatus (10) for grating based phase contrast computed tomography. The source-detector arrangement comprises an X-ray source (12) adapted for rotational movement around a rotation axis (R) relative to an object (140) and adapted for emittance of an X-ray beam of coherent or quasi-coherent radiation in a line pattern (21); and an X-ray detection system (16) including a first grating element (24) and a second grating element (26) and a detector element (6); wherein the line pattern of the radiation and a grating direction of the grating elements are arranged orthogonal to the rotation axis; and wherein the first grating element has a first grating pitch varied dependent on a cone angle (β) of the X-ray beam and/or the second grating element has a second grating pitch varied dependent on the cone angle of the X-ray beam.
Abstract:
A switchable grating for phase contrast imaging comprising a reservoir with a medium and x-ray absorbing particles acoustically connected to a first ultrasound generator and a second ultrasound generator arranged along a side of the reservoir orthogonal to the first side. The ultrasound generators are each, individually or together, configured to generate a soundwave with a frequency and phase such that a standing wave is formed within the medium causing the x-ray absorbing particles to organize along pressure nodes of the standing waves.
Abstract:
A signal processing system (SPS) and related method. The system comprises an input interface (IN) for receiving at least two data sets, comprising a first data set and second data set. The first data set is generated by an X-ray detector sub-system (XDS) at a first pixel size and the second data set generated at a second pixel size different from the first pixel size. An estimator (EST) is configured to compute, based on the two data sets, an estimate of a charge sharing impact.